Patents Examined by Vinit H. Patel
  • Patent number: 7192460
    Abstract: A cooling system (10) is provided for use with a fuel processing subsystem (12) for reducing a level of carbon monoxide in a reformate flow (14) for a proton exchange membrane fuel cell system (16). The fuel processing subsystem (12) includes first and second preferential oxidizers (18, 20) to oxidize the carbon monoxide carried in the reformate flow. The reformate cooling system (10) includes a coolant flow path (30), a reformate flow path (32), and first, second, third, and fourth heat exchanger core portions (34, 36, 38, 40). The core portions (36–40) are arranged in numbered sequence along the reformate flow path (32) with the first and second core portions (34, 36) located upstream of the first preferential oxidizer (18), and the third and fourth core portions (38, 40) located downstream of the first preferential oxidizer (18) and upstream of the second preferential oxidizer (20).
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: March 20, 2007
    Assignee: Modine Manufacturing Company
    Inventor: Jeroen Valensa
  • Patent number: 7192458
    Abstract: A process, control system and apparatus for controlling the air side flows to the major components of a fuel processor apparatus are provided. The control system employs a multi-capacity blower provides process air to a partial oxidation reactor and a preferential oxidation reactor. The multi-capacity blower preferably provides a portion of the process air through a control valve to the partial oxidation reactor and the remaining portion of the process air is passed through a flow restrictor to supply process air to the preferential oxidation reactor. The control system of the present invention is simple, low cost and reliable.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: March 20, 2007
    Assignee: HyRadix Incorporated
    Inventors: John R. Harness, Gavin P. Towler, Kurt M. Vanden Bussche, John J. Senetar, Daniel R. Sioui
  • Patent number: 7189270
    Abstract: A method and apparatus for conversion of solid and liquid fuels to a synthesis gas, steam and/or electricity in which about 10% to about 40% of a solid fuel and/or a liquid fuel is introduced into a gasifier and gasified, resulting in formation of a synthesis gas. The remaining portion of the solid fuel and/or liquid fuel is introduced into a first stage of a multi-stage combustor, resulting in formation of products of combustion and ash and/or char. The synthesis gas is introduced into a second stage of the multi-stage combustor disposed downstream of the first stage and overfire oxidant is introduced into a third stage of the multi-stage combustor disposed downstream of the second stage. The ash and/or char from the multi-stage combustor is then recycled into the gasifier.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: March 13, 2007
    Assignee: Gas Technology Institute
    Inventors: Bruce Bryan, Iosif Rabovitser
  • Patent number: 7169197
    Abstract: Solid waste resource recovery in space is effected by pyrolysis processing, to produce light gases as the main products (CH4, H2, CO2, CO, H2O, NH3) and a reactive carbon-rich char as the main byproduct. Significant amounts of liquid products are formed under less severe pyrolysis conditions, and are cracked almost completely to gases as the temperature is raised. A primary pyrolysis model for the composite mixture is based on an existing model for whole biomass materials, and an artificial neural network models the changes in gas composition with the severity of pyrolysis conditions.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: January 30, 2007
    Assignee: Advanced Fuel Research, Inc.
    Inventors: Michael A. Serio, Erik Kroo, Marek A. Wojtowicz, Eric M. Suuberg
  • Patent number: 7160344
    Abstract: The present invention relates to a catalytic process for the continuous production of carbon monoxide-free hydrogen from methane or methane-rich hydrocarbons using a solid catalyst comprising at least one group VIII metal in two parallel catalytic reactors.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 9, 2007
    Assignee: Council of Scientific and Industrial Research
    Inventors: Vasant Ramchandra Choudhary, Amarjeet Munshiram Rajput
  • Patent number: 7156887
    Abstract: Methods and apparatus for producing hydrogen are provided. The methods and apparatus utilize reforming catalysts in order to produce hydrogen gas. The reforming catalysts may be platinum group metals on a support material, and they may be located in a reforming reaction zone of a primary reactor. The support material may an oxidic support having a ceria zirconia promoter. The support material may be an oxidic support and a neodymium stabilizer. The support material may also be an oxidic support material and at least one Group IA, Group IIA, manganese, or iron metal promoter. The primary reactor may have a first and second reforming reaction zones. Upstream reforming catalysts located in the first reforming reaction zone may be selected to perform optimally under the conditions in the first reforming reaction zone. Downstream reforming catalysts located in the second reforming reaction zone may be selected to perform optimally under the conditions in the second reforming reaction zone.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: January 2, 2007
    Assignee: General Motors Corporation
    Inventors: Michael Ian Petch, David Thompsett, Suzanne Rose Ellis, David Wails, Jillian Elaine Bailie, Mark Robert Feaviour, Paul James Millington
  • Patent number: 7153334
    Abstract: Carbonaceous material is removed from a catalyst within an autothermal reformer by introducing an isolated oxidant stream into the autothermal reformer prior to introduction of hydrocarbon fuel into the reformer. A hydrocarbon stream is introduced into the autothermal reformer following removal of the carbonaceous material. A concurrent supply of the hydrocarbon stream and the oxidant stream to the autothermal reformer is maintained such that an exothermic reaction driven by the oxidant stream provides heat to an endothermic reaction driven by water vapor in the hydrocarbon stream. In accordance with 37 CFR 1.72(b), the purpose of this abstract is to enable the United States Patent and Trademark Office and the public generally to determine quickly from a cursory inspection the nature and gist of the technical disclosure. The abstract will not be used for interpreting the scope of the claims.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: December 26, 2006
    Assignee: General Motors Corporation
    Inventors: Suzanne Rose Ellis, Jessica Grace Reinkingh, Jullian Elaine Bailie, David Wails, Michael Ian Petch
  • Patent number: 7153333
    Abstract: In a reforming reactor (31), a partial oxidation reaction is performed between a hydrocarbon fuel and air, and in a mixer (32), water is injected into hot gas heated by the partial oxidation reaction to vaporize the water, and the vaporized water is mixed with the hot gas. In a shift reactor (33), the vaporized water is made to undergo a shift reaction with the hot gas. In this way, a device for promoting vaporization of the water or a complex fuel injection device is not required.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: December 26, 2006
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akihiro Sakakida, Mikiya Shinohara, Tadashi Shoji, Shiro Tanaka
  • Patent number: 7141085
    Abstract: The refractory protected, replaceable insert for a gasifier includes a replaceable floor edge insert that is formed with a predetermined mating profile that is complementary to a finished mating profile of the gasifier floor. The geometry of the mating profiles of the replaceable floor edge insert and the gasifier floor permit removable engagement between the floor edge insert and the mating profile of the gasifier floor. The replaceable floor edge insert is protected by a ring-like arrangement of hanging refractory bricks that each include an appendage. Each brick appendage covers a portion of the inner radial edge of the replaceable floor edge insert and also covers an upper surface portion of an underlying quench ring, thus prolonging the life of the floor and the quench ring. A refractory ceramic fiber paper can be provided between the hanging brick and the floor edge and quench ring.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: November 28, 2006
    Assignees: Texaco Inc., Texaco Development Corporation
    Inventors: John Corwyn Groen, John D. Winter
  • Patent number: 7141223
    Abstract: A fuel reformer for reforming hydrocarbon base fuel into hydrogen rich gas, with one embodiment comprised of material containing at least 15 to 25% by mass Cr, 8 to 35% by mass Ni, 2 to 4% by mass Si and the remainder Fe and inevitable impurities (C, Mn, P, S or others). The material provides sigma brittleness resistance and cementation resistance, and provides a reformer that is lightweight, low-cost, highly reliable and durable. A second embodiment adds to the composition 0.05 to 1% by mass Nb, providing improved oxidation resistance, cementation resistance, intergranular corrosion resistance, with further improved reliability and durability.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: November 28, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Masataka Kadowaki, Akira Fuju
  • Patent number: 7138001
    Abstract: Low-energy hydrogen production is disclosed. A reforming exchanger is placed in parallel with a partial oxidation reactor in a new hydrogen plant with improved efficiency and reduced steam export, or in an existing hydrogen plant where the hydrogen capacity can be increased by as much as 20–30 percent with reduced export of steam from the hydrogen plant.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: November 21, 2006
    Assignee: Kellogg Brown & Root LLC
    Inventors: Stanislaus A. Knez, Avinash Malhotra, David P. Mann, Martin J. Van Sickels
  • Patent number: 7128768
    Abstract: A hydrogen-rich reformate gas generator (36), such as a mini-CPO, POX, ATR or other hydrogen generator provides warm, dry, hydrogen-rich reformate gas to a hydrogen desulfurizer (17) which provides desulfurized feedstock gas to a major reformer (14) (such as a CPO) which, after processing in a water-gas shift reactor (26) and preferential CO oxidizer (27) produces hydrogen-containing reformate in a line (31) for use, for instance, as fuel for a fuel cell power plant. The expensive prior art hydrogen blower (30) is thereby eliminated, thus reducing parasitic power losses in the power plant. The drier reformate provided by the small hydrogen generator to the hydrogen desulfurizer favors hydrogen sulfide adsorption on zinc oxide and helps to reduce sulfur to the parts per billion level.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: October 31, 2006
    Assignee: UTC Fuel Cells, LLC
    Inventors: Ke Liu, Richard J. Bellows, John L. Preston, Jr.
  • Patent number: 7128769
    Abstract: Methanol steam reforming catalysts, and steam reformers and fuel cell systems incorporating the same. In some embodiments, the methanol steam reforming catalyst includes zinc oxide as an active component. In some embodiments, the methanol steam reforming catalyst further includes at least one of chromium oxide and calcium aluminate. In some embodiments, the methanol steam reforming catalyst is not pyrophoric. Similarly, in some embodiments, steam reformers including a reforming catalyst according to the present disclosure may include an air-permeable or air-accessible reforming catalyst bed. In some embodiments, the methanol steam reforming catalyst is not reduced during use. In some embodiments, the methanol reforming catalysts are not active at temperatures below 275° C. In some embodiments, the methanol steam reforming catalyst includes a sulfur-absorbent material. Steam reformers, reforming systems, fuel cell systems and methods of using the reforming catalysts are also disclosed.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: October 31, 2006
    Assignee: IdaTech, LLC
    Inventor: Curtiss Renn
  • Patent number: 7108730
    Abstract: This invention relates to a method for providing controlled heat to a process utilizing a flameless distributed combustion.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: September 19, 2006
    Assignee: Shell Oil Company
    Inventors: Rashmi K Shah, Thomas Mikus, Pettai Krishna Shankar
  • Patent number: 7101411
    Abstract: An apparatus for generating hydrogen gas in which hydrogen gas of a high purity is supplied to a hydrogen-utilizing device by using a decahydronaphthalene/naphthalene reaction. The apparatus includes a storage tank in which decahydronaphthalene is stored as a crude fuel, a reaction tank which has a catalyst and a heater for heating the catalyst and which causes dehydrogenation of decahydronaphthalene supplied from the storage tank to the heated catalyst, and a separation tank in which hydrogen-rich gas is separated out from naphthalene and hydrogen gas supplied from the reaction tank by using a hydrogen separation film and from which the separated hydrogen gas is discharged.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: September 5, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahiro Hayashi, Mamoru Ishikiriyama, Masahiko Sugiyama, Yasukazu Saito
  • Patent number: 7097676
    Abstract: A process and a device are provided for producing hydrogen gas from water and carbon. The process includes introducing steam and powdered carbon in stoichiometric ratio of carbon to water into a preheated oxidization chamber in such a way that a gas plasma is produced in which the steam is decomposed into its hydrogen and oxygen gas components and oxygen is combined with carbon to form carbon dioxide gas in an exothermic reaction at temperatures above 2000° C., and separating the carbon dioxide gas from the hydrogen gas. The device for conducting this process has an oxidization chamber defined in a hollow body and being provided with a preheater and having at least one inlet port for introducing steam into the oxidization chamber, at least one inlet port for introducing powdered carbon into the oxidization chamber, and at least one exit port for carrying off generated hydrogen gas and/or generated carbon dioxide gas from the oxidization chamber.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: August 29, 2006
    Inventors: Norman Wootan, Kenneth Hawkins
  • Patent number: 7087098
    Abstract: The invention relates to a method of gasifying carbon-containing compounds incorporating mineral elements and/or potential contaminants, and it also relates to a gasification installation having means for containing a bath of molten slag, means for charging said compounds into said bath, means for injecting at least oxidizer into the bath so that the mixture of carbon-containing compounds and oxidizer is super-stoichiometric, whereby a first fraction of the compounds is pyrolyzed, a second fraction is subjected to a combustion reaction suitable for delivering heat energy to the bath of slag, and a third fraction diffuses into the bath, means for recovering the gas given off by the pyrolysis and the combustion of the first and second fractions, and means for lowering the temperature of a portion of the molten slag so as to allow it to solidify, thereby immobilizing at least a portion of the third fraction of the compounds containing mineral elements and/or potential contaminants.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: August 8, 2006
    Assignees: Agriculture Azote et Carbone Organiques
    Inventors: André Garnier, Jacques Proot
  • Patent number: 7077878
    Abstract: The aim of the invention is to provide a method for gasifying organic materials which is simple to carry out and requires minimal equipment and which produced an undiluted gas of high calorific value. The inventive method should eliminate the need to use fluid beds and heat exchangers with high temperatures on both sides, with the heat being transferred from the furnace to a heat-carrying medium in a particularly defined way. To this end, the feed material is divided into a volatile phase and a solid carbon-containing residue in the pyrolysis reactor by circulating a hot heat-carrying medium. After the reaction agent has been added, said volatile phase is converted into the product gas by further heating in the reaction area, also using the heat-carrying medium. The solid, carbon-containing residue is separated from the heat-carrying medium in the separating stage and burnt in the furnace.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: July 18, 2006
    Assignee: Dr. Mühlen GmbH & Co. KG
    Inventors: Heinz-Jürgen Mühlen, Christoph Schmid
  • Patent number: 7070633
    Abstract: The present invention improves the start-up characteristics of a fuel gas generating apparatus for a fuel cell comprising a reformer. In a fuel gas generating apparatus 1 for a fuel cell comprising a vaporizer 22 that generates a fuel vapor by vaporizing a raw liquid fuel, a reformer 11 that generates a reforming gas that includes hydrogen from the raw fuel gas that has been partially oxidized by adding reforming air to the fuel vapor generated by the vaporizer 22, and a CO eliminator 13 that generates a fuel gas having carbon monoxide eliminated by adding a CO eliminating air to the reforming gas generated by the reformer 11, the supplied amount of the reforming air during the warm-up of the fuel gas generating apparatus for a fuel cell is larger than the supplied amount of reforming air during idle operation after completion of the warm-up.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: July 4, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Hikaru Okada, Yasunori Kotani, Atsushi Sakuma
  • Patent number: 7070634
    Abstract: A plasma reformer for the chemical reforming of gaseous mixtures of water and hydrocarbon fuels for producing hydrogen. The reformer contains a reaction chamber with outer lateral walls containing emitter electrodes and inner lateral walls containing collector electrodes. The emitter electrodes and collector electrodes form an electric circuit. There are a multiplicity of thin needle-like extrusions on the emitter electrode from which a profusion of high energy electrons are emitted. These high-energy electrons dissociate the hydrocarbon fuel through absorption and ionization emitting low energy electrons in the process. These low energy electrons cause dissociation of water. Thus, dissociation of hydrocarbon fuel acts to initiate dissociation of water. The molar ratio of water to hydrocarbon fuel in the input mixture for reactions, and therefor the production of hydrogen from water, increases with carbon number of the hydrocarbon fuel.
    Type: Grant
    Filed: November 3, 2003
    Date of Patent: July 4, 2006
    Inventor: Chi S. Wang