Abstract: A biodegradable packaging material, a method of manufacturing the same, as well as products made of the material wherein the manufacture comprises extrusion onto a fibrous substrate one or more polymer coating layers including at least one layer of a polymer blend consisting of (i) 20-95 wt-% of polylactide having a high melt index of more than 35 g/10 min (210° C.; 2.16 kg), (ii) 5-80 wt-% of polybutylene succinate (PBS) or a biodegradable derivate thereof, and (iii) 0-5 wt-% of one or more polymeric additives. The components of the blend are melted and blended in connection with the extrusion step. The goal is to improve extrudability, increase machine speed in extrusion and maintaining good adhesiveness to the substrate and good heat-sealability of the coating. The products include disposable drinking cups and board trays, as well as sealed carton packages for solids and liquids.
Abstract: Polyester-based films contain certain copolyesters (A) and polyester plasticizers (B). The copolyesters (A) may be selected from those in which the force required to stretch a film of the copolyester (A) by itself, from 2× to 5×, increases by less than 200%. The polyester plasticizers (B) have a weight-average molecular weight of 900 to 12,000 g/mol, and contain (i) a diol component comprising residues of diols having 2 to 8 carbon atoms, and (ii) a diacid component comprising residues of dicarboxylic acids having 4 to 12 carbon atoms. These polyester-based films are particularly useful for preparing ultra-thin LCD or OLED polarizers, because they can be stretched very thin with a high stretch ratio at lower temperatures.
Type:
Grant
Filed:
January 10, 2018
Date of Patent:
August 30, 2022
Assignee:
Eastman Chemical Company
Inventors:
Wayne Ken Shih, Kimberley Carmenia Carico
Abstract: A metal sheet for containers includes a metal sheet and a polyester film which is laminated on a surface of the metal sheet to be an inner surface side of containers. The polyester film contains a wax in an amount of 0.010 to 2.000 mass %, and has a dipole-dipole force of 40 mN/m or less.
Abstract: A photochromic polyurethane laminate that is constructed to solve certain manufacturing difficulties involved in the production of plastic photochromic lenses is disclosed. The photochromic laminate includes at least two layers of a resinous material and a photochromic polyurethane layer that is interspersed between the two resinous layers and which contains photochromic compounds. The polyurethane layer is formed by curing a mixture of a solid thermoplastic polyurethane, at least one isocyanate prepolymer, at least one photochromic compound, and a stabilizing system.
Type:
Grant
Filed:
September 2, 2016
Date of Patent:
August 23, 2022
Assignee:
HOYA Optical Labs of America, Inc.
Inventors:
Xuzhi Qin, Hideyo Sugimura, Michael Boulineau
Abstract: A method of preparing thermoplastic polyester elastomer membrane with high binding strength includes the following steps: (a) Adding a reaction solvent to TPEE powder or granules to prepare a solvent mixture. (b) Adding a modifier to the solvent mixture, and mixing uniformly to prepare a first mixture, the modifier including at least one of o-xylylenediamine, m-xylylenediamine, alpha,alpha?-diamino-p-xylene, 2,3,5,6-Tetrachloro-p-xylene-alpha,alpha?-diamine, and 1,3,5,7-Tetraazatricyclodecane. (c) Adding an initiator to the first mixture, and mixing uniformly to prepare a second mixture. (d) Obtaining a finished product by passing the second mixture through an injection laminating process.
Abstract: An object of the present invention is to provide a resin composition which enables formation of a resin layer having excellent electrical performance including high frequency performance and appropriate solubility with desmear solution required on a material used in manufacturing of a printed wiring board. To achieve the object, the resin composition used for constituting a resin layer on a metal layer surface of a laminate includes a polyphenylene ether compound and 10 parts by mass to 100 parts by mass of a styrene-butadiene block copolymer and 0.1 parts by mass to 100 parts by mass of a component promoting solubility with desmear solution against 100 parts by mass of the polyphenylene ether compound.
Abstract: The present invention provides a packaging material for a patch, the packaging material comprising: an inner layer film made of a polyethylene terephthalate-based resin having heat sealing properties; and a substrate film, wherein a heat-sealing surface of the inner layer film comprises an isophthalic acid-modified polyethylene terephthalate resin having a copolymerization ratio of isophthalic acid component of 10 mol % to 20 mol %. More preferably, the inner layer film made of the polyethylene terephthalate-based resin having heat sealing properties is a multi-layer film comprising at least two layers including a heat sealing surface side layer made of an isophthalic acid-modified polyethylene terephthalate resin having a copolymerization ratio of isophthalic acid component of 10 mol % to 20 mol % and a layer made of an isophthalic acid-modified polyethylene terephthalate resin having a copolymerization ratio of isophthalic acid component of 0 mol % to 5 mol %.
Abstract: A member for use in undersea applications comprising a plurality of conduits assembled into a bundle; the bundle being wrapped with a pressure-sensitive tape comprising a backing, a layer of corrosion-resistant yarns on one surface of the backing, and pressure-sensitive adhesive layer that coats the corrosion-resistant yarns and binds them to the backing.
Type:
Grant
Filed:
September 24, 2020
Date of Patent:
August 2, 2022
Assignee:
INTERTAPE POLYMER CORP.
Inventors:
John K. Tynan, Jr., Deborah A. Chrzanowski, Mark A. Lewandowski
Abstract: A member for use in undersea applications comprising a plurality of conduits assembled into a bundle; the bundle being wrapped with a pressure-sensitive tape comprising a backing, a layer of corrosion-resistant filaments on one surface of the backing, and pressure-sensitive adhesive layer that coats the filaments and binds them to the backing.
Type:
Grant
Filed:
October 28, 2019
Date of Patent:
August 2, 2022
Assignee:
INTERTAPE POLYMER CORP.
Inventors:
John K. Tynan, Jr., Deborah A. Chrzanowski, Mark A. Lewandowski
Abstract: A method for producing a laminate, the method comprising at least a pretreatment step of pretreating a surface of a substrate made of a plastic film by reactive ion etching so that the maximum displacement of the substrate surface measured by local thermal analysis is 300 nm or more, and a lamination step of laminating a thermoplastic resin layer made of a material different from that of the substrate on the pretreated surface of the substrate; wherein the plastic film is a polyethylene terephthalate film.
Abstract: An electrical steel sheet (10) is provided with a base iron (1) and an insulating film (2) formed on a surface of the base iron (1). The insulating film (2) contains: a first component: 100 parts by mass, the first component containing: a metal phosphate: 100 parts by mass; and one kind selected from a group consisting of an acrylic resin, an epoxy resin and a polyester resin which have an average particle size of 0.05 ?m to 0.50 ?m, or a mixture or copolymer of two or three kinds selected from the group: 1 part by mass to 50 parts by mass; and a second component composed of dispersion or powder of a fluorine resin having an average particle size of 0.05 ?m to 0.35 ?m: 0.5 parts by mass to 10 parts by mass.
Abstract: A technology for improving molding properties while minimizing curling after molding in a battery packaging material comprising a laminate that is provided with a barrier layer, a heat-sealable resin layer positioned on one surface side of the barrier layer, and a polyester film positioned on the other surface side of the barrier layer. This battery packaging material is configured from at least a laminate provided with a barrier layer, a heat-sealable resin layer positioned on one surface side of the barrier layer, and a polyester film positioned on the other surface side of the barrier layer. The birefringence of the polyester film is in the range of 0.016-0.056.
Abstract: The aim of the invention is to provide polyester/primer/metallic coating composite films having good adherence of the metallic coating in dry and humid conditions. Said films also form a good gas barrier: oxygen permeability less than or equal to 0.8 cc/m2/d; water vapour permeability less than or equal to 0.3 g/m2/d. To this end, the invention concerns a composite film comprising a polyester substrate, at least one coating adhering on at least one of the faces of the substrate and at least one layer of primer for cross-linked adhesion between the substrate and the coating.
Type:
Grant
Filed:
October 14, 2016
Date of Patent:
June 28, 2022
Assignee:
TORAY FILMS EUROPE
Inventors:
Keltoum Ouzineb, Maria Cristina Penache, Laurent Derveaux
Abstract: The present invention relates to a binder system which contains an isocyanate-terminated polyurethane prepolymer as the resin component and a polyol mixture as the curing agent, said polyol mixture containing at least one alkoxylated diamine. The invention also relates to the use of the binder system as an adhesive/sealing material, in particular as a laminating adhesive for food packaging.
Type:
Grant
Filed:
October 24, 2017
Date of Patent:
June 21, 2022
Assignee:
Henkel AG & Co. KGaA
Inventors:
Marcel Blodau, Andre te Poel, Claudia Meckel-Jonas
Abstract: A multi-layer polymer film comprising at least one middle layer A, the polymeric constituents of which are soluble in aqueous solution, and in each case at least one substantially water-impermeable covering layer B, C arranged above and below the at least one middle layer A, wherein the layers A, B and C independently of each other in each case comprise at least one thermoplastic polymer and at least one of the covering layers B and C comprises at least one polyhydroxyalkanoate is presented and described. Processes for the production of the multi-layer polymer film according to the invention and its use for the production of molded parts, films or bags are furthermore presented and described.
Type:
Grant
Filed:
November 19, 2015
Date of Patent:
June 14, 2022
Assignee:
BIO-TEC BIOLOGISCHE NATURVERPACKUNGEN GMBH & CO. KG.
Inventors:
Ralf Hackfort, Johannes Mathar, Frank Rörthmans, Harald Schmidt, Christoph Hess
Abstract: A resin composition is provided. The resin composition comprises the following components: (A) a halogen-free epoxy resin; (B) a hardener; and (C) a phosphorus-containing phenolic resin of the following formula (I): wherein m, n, l, R1, and R2 are as defined in the specification.
Abstract: The invention pertains to a multilayer assembly comprising: (L1) a first inner layer [layer (L1)] made from a first composition [composition (C1)], said composition (C1) comprising: at least one polymer comprising recurring units derived from ethylene (E) and from chlorotrifluoroethylene (CTFE), and at least one Ti compound; and (L2) a second outer layer [layer (L2)] made from a second composition [composition (C2)], said composition (C2) being substantially free from TiO2-containing additives, said second composition comprising at least one semi-crystalline polymer comprising recurring units derived from ethylene and from at least one fluoromonomer selected from chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) and mixtures thereof, said semi-crystalline polymer having a heat of fusion of at least 35 J/g [polymer (A)].
Type:
Grant
Filed:
July 29, 2019
Date of Patent:
May 24, 2022
Assignee:
SOLVAY SPECIALTY POLYMERS ITALY S.P.A.
Inventors:
Serena Carella, Mattia Bassi, Stefano Mortara, Paolo Toniolo, Julio A. Abusleme
Abstract: An object is to provide a laminate having excellent lamination strength that includes a polyester film having a furandicarboxylate unit and a heat-sealable resin layer, and to provide a packaging bag including the same. A laminate including a polyester film and a heat-sealable resin layer, wherein the polyester film is a biaxially oriented polyester film containing a polyethylene furandicarboxylate resin composed of a furandicarboxylic acid and ethylene glycol, a plane orientation coefficient ?P of the film is 0.100 or more and 0.160 or less, a thickness of the film is 1 ?m or more and 300 ?m or less, a heat shrinkage rate of the film is 10% or less when heated at 150° C. for 30 minutes, and lamination strength of the laminate is 2.0 N/15 mm or more.
Abstract: To provide a layered polyester film having excellent mechanical properties, transparency, heat resistance, and gas barrier property. A layered polyester film including a polyester film and a thin film layer, wherein the polyester film is a biaxially oriented polyester film including a dicarboxylic acid component containing mainly a furandicarboxylic acid and a glycol component containing mainly ethylene glycol, the covering layer is formed on at least one surface of the polyester film, and the layered polyester film has a plane orientation coefficient ?P of not less than 0.100 and not more than 0.200, and a thickness of the layered polyester film is not thinner than 1 ?m and not thicker than 300 ?m.