Patents Examined by Vladimir Magloire
  • Patent number: 11927469
    Abstract: The present invention relates to a method of proof-testing a radar level gauge system arranged to determine a filling level of a product in a tank, the method comprising the steps of: transmitting an electromagnetic transmit signal towards a surface of the product in the tank; receiving an electromagnetic reflection signal resulting from reflection of the transmit signal at the surface of the product; forming a measurement representation based on the transmit signal and the reflection signal, the measurement representation comprising surface echo information indicative of the filling level of the product; adding, to the measurement representation, proof test echo information indicative of a predefined proof test level, resulting in a modified measurement representation; processing the modified measurement representation to determine a proof test level based on the modified measurement representation; and providing a signal indicative of a result of the processing.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: March 12, 2024
    Assignee: ROSEMOUNT TANK RADAR AB
    Inventors: Mikael Inglund, Tobias Lilja, Tomas Wennerberg, Lars-Ove Larsson, Pär Abrahamsson, Christian Skaug
  • Patent number: 11927665
    Abstract: A method for operating a stepped frequency radar system is disclosed. The method involves receiving digital frequency control signals that correspond to different frequencies of radio frequency (RF) signals, and performing stepped frequency scanning across a frequency range using at least one transmit antenna and a two-dimensional array of receive antennas and RF signals at the different frequencies that correspond to the digital frequency control signals.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: March 12, 2024
    Assignee: MOVANO INC.
    Inventor: Michael A. Leabman
  • Patent number: 11921188
    Abstract: A method for determining direction information for at least one target object in a radar system for a vehicle. The first detection information is provided by at least two receive antennas of the radar system, wherein the first detection information is specific for a first radar signal transmitted by a first transmit antenna of the radar system. The second detection information is provided by the at least two receive antennas of the radar system, wherein the second detection information is specific for a second radar signal transmitted by a second transmit antenna of the radar system. A first angle determination and a second angle determination are performed. At least one comparison of the first angle information with the second angle information is performed in order to detect an ambiguity in the first angle determination for the determination of the direction information.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: March 5, 2024
    Assignee: Hella GmbH & Co. KGaA
    Inventors: Tobias Breddermann, Andreas Von Rhein, Christian Westhues
  • Patent number: 11919479
    Abstract: The systems and methods disclosed herein are configured to provide security to a vehicle. A system includes a point measurement device inside a space of a vehicle. The system identifies a threat if points that differ from a calibrated set of points are localized in an area of the space.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: March 5, 2024
    Assignee: Ford Global Technologies, LLC
    Inventors: Tarik Safir, Sam Harris, Jamie Mahmutyazicioglu, Jonathan Hannaford, Endre Hanak
  • Patent number: 11906655
    Abstract: The invention relates to a radar system for capturing surroundings of a moving object, in particular a vehicle and/or a transportation apparatus, such as a crane, in particular, wherein the system is mounted or mountable on the moving object, wherein the radar system comprises at least two non-coherent radar modules (RM 1, RM 2, . . . RM N) having at least one transmitter antenna and at least one receiver antenna, wherein the radar modules (RM 1, RM 2, . . . RM N) are arranged or arrangeable in distributed fashion on the moving object, wherein provision is made of at least one evaluation device which is configured to process transmitted and received signals of the radar modules to form modified measurement signals in such a way that the modified measurement signals are coherent in relation to one another.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: February 20, 2024
    Assignee: Symeo GmbH
    Inventors: Martin Vossiek, Michael Gottinger, Peter Gulden, Mark Christmann, Christoph Mammitzsch
  • Patent number: 11899133
    Abstract: A method for determining at least one object information item of at least one target object (18) which is sensed with a radar system (12) of a vehicle (10), a radar system (12) and a driver assistance system (12) are described. Transmission signals (32a, 32b, 32c) are transmitted into a monitoring range (14) of the radar system (12) with three transmitters (Tx1, Tx2, Tx3). Echoes, which are reflected at the at least one target object (18), of the transmission signals (32a, 32b, 32c) are received as received signals (34a, 34b, 32c) with at least two receivers (RxA, RxB, RxC, RxD). The received signals (34a, 34b, 34c) are subjected to at least one multi-dimensional discrete Fourier transformation. At least one target signal is determined from the result of the Fourier transformation. An object information item is determined from the target signal.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: February 13, 2024
    Assignee: VALEO SCHALTER UND SENSOREN GMBH
    Inventors: Christian Sturm, Hamid Afrasiabi Vayghan, Yoke Leen Sit, Gang Li
  • Patent number: 11899100
    Abstract: A method of determination of the alignment angles of two or more road vehicle (1) borne radar sensors (4) for a road vehicle radar auto-alignment controller (3) starting from initially available rough estimates of alignment angles. From at least two radar sensors (4) are obtained signals related to range, azimuth and range rate to detections. The detections are screened (5) to determine detections from stationary targets. From the determined detections from stationary targets is derived a linearized signal processing model involving alignment angles, longitudinal and lateral velocity and yaw-rate of the road vehicle (1). A filter algorithm is applied to estimate the alignment angles. Based on the estimated alignment angles are produced signals suitable for causing a road vehicle (1) radar auto-alignment controller (3) to perform radar offset compensation.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: February 13, 2024
    Assignee: Zenuity AB
    Inventors: Tony Gustafsson, Joakim Sörstedt
  • Patent number: 11899098
    Abstract: A system for testing a radar under test is provided. The system comprises an antenna array with a plurality of antenna elements, a plurality of transceivers downstream to the plurality of antenna elements and a processing unit. In this context, the processing unit is configured to communicate the radar under test by transmitting and/or receiving a two dimensional test pattern and to compare the two dimensional test pattern with a reference pattern.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: February 13, 2024
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Yassen Stefanov Mikhailov, Steffen Neidhardt
  • Patent number: 11879982
    Abstract: Methods for determining corrected positions of a global navigation satellite system (GNSS) rover using a GNSS base station and one or more GNSS reference stations include determining a statistical representation of position measurements from the GNSS reference stations and an instantaneous position measurement from the GNSS reference stations. A position correction is determined based on the statistical representation and the instantaneous position measurement. A corrected position of the GNSS rover is determined based on a position of the GNSS rover and the position correction.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: January 23, 2024
    Assignee: Trimble Inc.
    Inventors: Michael Cash, Stuart Riley, Vivek Nadkarni
  • Patent number: 11874392
    Abstract: A non-transitory computer-readable storage device stores machine instructions which, when executed by a processor, cause the processor to determine a chirp period Tc for radar chirps in a radar frame. The chirp period Tc comprises a rising period Trise and a falling period Tfall. The processor determines, for each radar chirp in the radar frame, a corresponding randomized frequency characteristic during Tfall, and causes a radar sensor circuit to generate the radar chirps in the radar frame based on Tc, Trise, Tfall, and the corresponding randomized frequency characteristics. In some implementations, the machine instructions to determine the corresponding randomized frequency characteristic comprise machine instructions to determine a frequency step having a frequency f_step and a period Tstep. At least one of the frequency f_step and the period Tstep is dithered across radar chirps in the radar frame.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: January 16, 2024
    Assignee: Texas Instruments Incorporated
    Inventors: Shankar Ram Narayana Moorthy, Karthik Subburaj, Shailesh Joshi, Piyush Soni
  • Patent number: 11874369
    Abstract: The present application discloses a location detection method, an apparatus, a device and a readable storage medium, which relate to vehicle infrastructure cooperation and automatic driving in intelligent transportation. A specific implementation solution is as follows: after acquiring an initial location of a target object, a millimeter wave radar projects the initial location onto an upper interface and a lower interface of a road section respectively to obtain a first projection location and a second projection location, and then determines an accurate location of the target object according to the first projection location and the second projection location. In this process, the initial location is mapped twice to make full use of an association relationship between an installation point and installation environment, so that the target location is no longer an approximate location, but a precise location obtained according to geometric projection, which improves accuracy of location detection.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: January 16, 2024
    Assignee: APOLLO INTELLIGENT CONNECTIVITY (BEIJING) TECHNOLOGY CO., LTD.
    Inventor: Guangqi Yi
  • Patent number: 11867792
    Abstract: An object velocity detection method includes: obtaining a first reception signal and a second reception signal that are received in different time intervals through a radar sensor; determining a Doppler effect based on the first reception signal and the second reception signal; determining an angle value of an object based on a signal obtained by compensating for the Doppler effect; obtaining a compensated signal by compensating for the angle value in the second reception signal; and determining a velocity of the object based on the compensated signal.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: January 9, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woosuk Kim, Seongwook Lee, Seung Tae Khang
  • Patent number: 11860296
    Abstract: A radar arrangement includes a printed circuit board (PCB), an electronic component, and an antenna. The electronic component is arranged on the PCB and is used to generate a high-frequency signal. The PCB has at least four electrically conductive layers separated from one another by at least three electrically insulating layers. A first conductive inner layer is adjacent to a first conductive outer layer, and a second conductive inner layer is adjacent to a second conductive outer layer. The electronic component is arranged on the first conductive outer layer. The antenna is formed at least partially in the second outer layer. The signal generated by the electronic component is transmitted to the antenna, which is formed at least partially in the second conductive outer layer of the PCB, through a region of the conductive inner layers and insulating inner layers of the PCB.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: January 2, 2024
    Inventors: Thomas Convent, Christoph Dahl, Michael Gerding, Christian Schulz, Michael Vogt
  • Patent number: 11846700
    Abstract: A radar system is provided and includes a radar transceiver integrated circuit (IC) and a processor coupled to the radar transceiver IC. The radar transceiver IC includes a chirp generator configured to generate a plurality of chirp signals and a phase shifter configured to induce a signal phase shift. The radar transceiver IC is configured to transmit a frame of chirps based on the plurality of chirp signals and generate a plurality of digital signals, each digital signal corresponding to a respective reflection received based on the plurality of chirp signals. The processor is configured to control the phase shifter to induce the signal phase shift in a first subset of chirp signals of the plurality of chirp signals and determine a phase shift induced in the first subset of chirp signals by the phase shifter based on the digital signal.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: December 19, 2023
    Assignee: Texas Instruments Incorporated
    Inventors: Sandeep Rao, Karthik Subburaj
  • Patent number: 11846719
    Abstract: An anti-interference microwave detection module processes frequency-selection for reducing the interferences from the electromagnetic radiation of the frequency bands different from the frequency band of the anti-interference microwave detection module in the environment to the echo signal of the anti-interference microwave detection module. A Doppler intermediate-frequency signal is trend processed to obtain a fluctuation signal. The characteristic parameter of the fluctuation of the fluctuation signal is corresponding to the characteristics of the movement of the object in the detection space, so that the anti-interference microwave detection module is able to completely reflect the characteristics of the movement of the object in the detection space and reduce the interferences of the electromagnetic radiation in the environment, including the interferences of the electromagnetic radiation of the same frequency band of the anti-interference microwave detection module, to the fluctuation signal.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: December 19, 2023
    Inventor: Gaodi Zou
  • Patent number: 11846699
    Abstract: A need exists for a method to do monopulse tracking with a single beam phased array antenna. With a monopulse tracker antenna, the satellite, or moving target, will have a beacon signal that the tracker can acquire. The beacon signal may be a preamble in the transmitted signal from the satellite. The monopulse tracker antennas are scanned over the volume, minimizing the error signal. When the error signal is minimal, the antenna is pointed in the direction of the satellite or moving target. Because the tracker needs to know direction offsets in both azimuth and elevation planes, error signals from both planes are needed. The monopulse tracker antenna maintains a radio frequency link to the beacon signal, causing the antenna to lock in the direction of the satellite when the error signal is minimized to zero.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: December 19, 2023
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Jia-Chi Samuel Chieh, Everly Yeo, Max Kerber, Randall B. Olsen
  • Patent number: 11841445
    Abstract: A satellite positioning signal receiving device that performs positioning using satellite observation information in a plurality of frequency bands enables gradual addition in accordance with a required number of frequency bands. The satellite positioning signal receiving device includes at least one satellite positioning signal receiving circuit that supports a single frequency band, receives a satellite positioning signal, and generates satellite observation information. Each of the satellite positioning signal receiving circuits includes a synchronization control interface that synchronizes the satellite positioning signal receiving circuits with each other, and a satellite information transmission interface that shares the satellite observation information between the satellite positioning signal receiving circuits. The satellite positioning signal receiving device performs positioning on the basis of satellite observation information.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: December 12, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Tetsuhiro Futami, Katsuyuki Tanaka
  • Patent number: 11841420
    Abstract: A method for radar-based localization and/or mapping, preferably including receiving sensor data, determining egospeed, and/or determining egorotation. The method can optionally include performing simultaneous localization and mapping. A system for radar-based localization and/or mapping, preferably including one or more radar sensors, and optionally including one or more vehicles and/or auxiliary sensors (e.g., coupled to the radar sensors).
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: December 12, 2023
    Assignee: Oculii Corp.
    Inventors: Lang Hong, Steven Hong
  • Patent number: 11837797
    Abstract: A circuit includes a radio frequency (RF) channel including an input node and an output node and being configured to receive an RF oscillator signal at the input node and to provide an RF output signal at the output node; a mixer configured to mix an RF reference signal and an RF test signal representative of the RF output signal to generate a mixer output signal; an analog-to-digital converter configured to sample the mixer output signal in order to provide a sequence of sampled values; and a control circuit configured to provide a sequence of phase offsets by phase-shifting at least one of the RF test signal and the RF reference signal using one or more phase shifters, calculate a spectral value from the sequence of sampled values; and calculate estimated phase information indicating a phase of the RF output signal based on the spectral value.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: December 5, 2023
    Assignee: Infineon Technologies AG
    Inventors: Jochen O. Schrattenecker, Niels Christoffers, Vincenzo Fiore, Bernhard Gstoettenbauer, Helmut Kollmann, Alexander Melzer, Alexander Onic, Rainer Stuhlberger, Mathias Zinnoecker
  • Patent number: 11835622
    Abstract: A radio detection and ranging (radar) signal processing device obtains radar data by compensating for a change in a carrier frequency of a sensed radar signal, and outputs a radar image map based on the obtained radar data. The radar signal processing method includes obtaining a beat frequency signal based on a radar transmission signal generated based on a frequency modulation model and a radar reflection signal obtained from the radar transmission signal being reflected from an object, and generating radar data by compensating the beat frequency signal for a carrier frequency change by the frequency modulation model.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: December 5, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungdo Choi, Byung Kwan Kim