Patents Examined by Walter Benson
  • Patent number: 8466603
    Abstract: A driving apparatus is capable of efficiently transmitting a reciprocating displacement of an electromechanical transducer element to a movement member and of effectively utilizing a vacant space. The driving apparatus includes an electromechanical transducer element having first and second end faces opposed to each other in a direction of expansion and contraction thereof, a vibration friction portion attached to the second end face of the electromechanical transducer element, and a movement member friction-bonded to the vibration friction portion. The movement member is movable along the direction of expansion and contraction of the electromechanical transducer element. The driving apparatus includes a vibration transmission member arranged between the second end face of the electromechanical transducer element and an end face of the vibration friction portion. A central axis of the electromechanical transducer element and a central axis of the vibration friction portion are not on the same line.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: June 18, 2013
    Assignee: Mitsumi Electric Co., Ltd.
    Inventors: Makoto Takahashi, Masato Nito
  • Patent number: 8466646
    Abstract: The position of a rotor of a motor is determined. The motor includes a stator having a plurality of coils. The rotor includes at least one rotating magnetic field device. When the rotor is moving below a threshold speed, the current in the coils is measured. A pre-programmed data structure is accessed. The data structure stores stator currents associated with predetermined rotor positions. A first absolute position of the rotor is determined from the data structure according to the measured current from each of the coils. When the rotor is moving above the threshold speed, one or more rising or falling edges of magnetic field strength associated with the at least one rotating magnetic field device are sensed. At least one timing aspect of the rising and falling edges of magnetic field strength are compared to determine a second absolute position of the rotor.
    Type: Grant
    Filed: February 21, 2011
    Date of Patent: June 18, 2013
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Patrick A. O'Gorman, Rene Vivanco, Alex Kurnia
  • Patent number: 8466602
    Abstract: In a linear driving device 7, in which a driving shaft 21 vibrates in an axial direction by a vibration member 17, as a result of which a movable body 3 that is frictionally contact with the driving shaft 21 slides along the axial direction of the driving shaft 21, the vibration member 17 includes a piezoelectric element 23 and a vibrator 19 made of a metal plate having elasticity; the vibrator 19 is fixed to the piezoelectric element 23 by superimposing plate faces thereof; the driving shaft 21 has a trunk 25 along which the movable body 3 slides, and an end portion 26 to be fixed to the vibrator 19; a base surface 24 of the end portion 26 abuts with and is fixed to the vibrator 19; and an area of the base surface 24 is smaller than a cross sectional area of the trunk 25.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: June 18, 2013
    Assignee: New Shicoh Technology Co., Ltd.
    Inventors: Manabu Shiraki, Junichi Tada
  • Patent number: 8466647
    Abstract: Disclosed herein is a sensorless-type brushless DC motor, including: a magnet provided in a rotor; and a stator formed by winding a coil on a core stacked with sheets while facing the magnet, wherein the position of the rotor is detected by detecting back electromotive force induced to the coil, the back electromotive force includes a harmonic component 5 times higher than a fundamental wave, and an amplitude ratio of the 5-times harmonic wave to the fundamental wave is set to be 1% or more. Further, the sensorless-type brushless DC motor can prevent a failure in detecting an initial position of the rotor by controlling a waveform of the back electromotive force and minimize an increase of a starting time.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: June 18, 2013
    Assignee: Samsung-Electro-Mechanics Co., Ltd
    Inventors: Sang Kyu Lee, Dae Lyun Kang
  • Patent number: 8461786
    Abstract: In a method and a device for determining the position of a closing part of a vehicle, that can be moved by a direct-current motor, a motor current signal is derived from the direct-current motor and converted into a digital signal by an analog-digital converter. The signal is filtered and forwarded to a position counter for counting the current ripple. The scanning frequency of the analog-digital converter is modified according to the rotational speed of the direct-current motor.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: June 11, 2013
    Assignee: Continental Automotive GmbH
    Inventor: Roman Morawek
  • Patent number: 8461784
    Abstract: An architectural window covering having a programmable electric motor is disclosed. The architectural window covering includes a head rail comprising at least one cavity, a shade coupled to the head rail, a bottom rail coupled to the shade, and at least two tandem stacked motors coupled to the shade via a drive rail such that the at least two motors fit within the at least one cavity of the head rail.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: June 11, 2013
    Assignee: Hunter Douglas Inc.
    Inventors: Gary Skinner, Richard Langille, Philip Chermak
  • Patent number: 8461783
    Abstract: An electric drive unit for a water-bearing domestic appliance having a converter to provide a supply voltage from a multiphase voltage system; a control device to control the converter in order to operate a first electric motor connected to the multiphase voltage system; a load-current-carrying DC link arranged upstream of the converter; and an electrical device connected to at least part of the multiphase voltage system or the load-current-carrying DC link via a connection device, wherein the electrical device has a second electric to operate a hydraulic pump and/or a blower and/or a valve.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: June 11, 2013
    Assignee: BSH Bosch und Siemens Hausgeraete GmbH
    Inventors: Pietro Navarra, Michael Rosenbauer, Hans-Dieter Rossteuscher
  • Patent number: 8456127
    Abstract: Provided is a method of obtaining an image of a disc, in which the method obtains an image of an analysis or test result object of a disc by minimizing a difference between the positionings of a magnet of the disc and a magnet of a feeding unit, and an apparatus for driving a disc, wherein the apparatus performs the method. The method includes: fixing a positioning of a disc by using magnetic attraction between a first magnet installed on the disc and a second magnet installed on a feeding unit; minimizing a difference between the positionings of the first and second magnets; and obtaining an image of an analysis or test result object of the disc.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: June 4, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-cheol Kim, Chung-ung Kim, Ki-ju Lee, Jong-jin Park, Dong-hwi Cho, Su-bong Bae
  • Patent number: 8456111
    Abstract: A linear drive based on linear motors, for panels, in particular sliding doors, movable along a respective travel path. A linear drive for at least one panel, in particular a sliding door leaf, movable along a travel path, has at least one linear motor for this at least one panel. The linear motor is provided with a stator member and a carriage. Furthermore, the linear drive has a control circuit. The control circuit is adapted to stop the linear motor in the event of failure of power supply to the linear motor, by switching-off the linear motor and operating it as a generator. Thereupon, in terms of its displaceability, this movable panel is enabled by the control circuit. In addition, the linear drive has a switch for switching-off the energy supply to the at least one linear motor.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: June 4, 2013
    Assignee: Dorma GmbH & Co. KG
    Inventor: Sven Busch
  • Patent number: 8456123
    Abstract: A conveyance system. The conveyance system includes a movable device for conveying an article, and a robot selected from the group consisting of an articulated robot and an orthogonal robot. The movable device is configured to be both vertically and horizontally movable; and, the robot is mounted on the movable device. The robot includes a hand and a gripper disposed on the hand. The gripper is configured to hold the article. The movable device and the robot are configured to convey the article in conveyance operations that include an extraction, a conveyance, and an installation, of the article; the range of the conveyance operations lies within a working range of the robot from a present position that is selected with priority. The movable device is configured to remain in a stationary state when the article is conveyed by the robot using the conveyance operations within the working range.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: June 4, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Shigeto Nishiuchi, Masashi Tsuyama, Takahiro Nakagawa, Youichi Nonaka
  • Patent number: 8456112
    Abstract: Disclosed is a linear electric motor having a fixed primary comprising a stator divided into a number of sections, including a translating secondary having an operative length longer than any two adjacent sections of the stator in the form of a reaction plate, and a connecting means for connecting only those sections of the stator that are at least partially covered by the reaction plate. The position of the reaction plate relative to the stator is determined by monitoring current in the active representative sections. Power is supplied to each stator section individually, with power supplied in a modulated manner to end active stator sections only partially covered by the reaction plate. A measurement of the current to the active representative section is used to control output voltage to all energized stator sections and is used to determine the change in position of the reaction plate.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: June 4, 2013
    Assignee: Texchange Limited
    Inventors: Rupert John Cruise, Christopher Roger Lines
  • Patent number: 8456126
    Abstract: There is provided a motor control system and motor control method which can shorten settling time by restraining vibration and deviation relative to an advancing direction during operation. Moreover, according to the present invention, it is possible to cause a motor to be operated with an ideal track and, since it is possible to always monitor a present position, it is made easy to cause a plurality of axes to be synchronously operated. The motor control system is provided with a unit generating command waveforms from a jerk data which has significant effects on the vibration relative to the advancing direction, and a unit performing a real time real position control of regenerating future command waveforms according to a deviation amount, while always performing jerk-limit, whereby the vibration and the deviation relative to the advancing direction when the motor operates at high speed are restrained.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: June 4, 2013
    Assignee: Hitachi High-Tech Instruments Co., Ltd.
    Inventors: Mitsuaki Tate, Yasushi Ishii, Masamichi Kihara
  • Patent number: 8450907
    Abstract: A sound generator includes a transducer converting electric energy to mechanical energy, a mechanical amplifier mechanically amplifying a vibration generated in a piezoelectric component of the transducer, and a radiation plate radiating a sound wave from a signal amplified by the mechanical amplifier, wherein the radiation plate includes a first step having a height for compensating for a first resonance frequency and a second step having a height for compensating for a second resonance frequency.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 28, 2013
    Assignee: POSTECH Academy-Industry Foundation
    Inventors: Won Kyu Moon, Haksue Lee, Yub Je
  • Patent number: 8446119
    Abstract: An apparatus for controlling an electric motor is provided. A plurality of switches is provided for controlling a direction of current through motor coils of the electric motor. A brushless motor control circuit is connected to each of the plurality of switches. Responsive to a request to adjust one of an angular velocity and an angular acceleration of the electric motor, the plurality of switches are activated to place the motor coils in a predetermined configuration to maximize torque or reduce a total back electromotive force (BEMF) from the motor coils.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Allen Keith Bates, Nhan Xuan Bui, Reed Alan Hancock, Wayne Isami Imaino, Daniel James Winarski
  • Patent number: 8446117
    Abstract: Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a vector controlled motor drive system when the multi-phase machine operates in an overmodulation region. The disclosed embodiments provide a mechanism for adjusting a duty cycle of PWM waveforms so that the correct phase voltage command signals are applied at the angle transitions. This can reduce variations/errors in the phase voltage command signals applied to the multi-phase machine so that phase current may be properly regulated thus reducing current/torque oscillation, which can in turn improve machine efficiency and performance, as well as utilization of the DC voltage source.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: May 21, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Gabriel Gallegos-Lopez, Michael H. Kinoshita, Ray M. Ransom, Milun Perisic
  • Patent number: 8446115
    Abstract: A motor drive device has a drive circuit for driving a motor, and a control section for controlling the drive circuit. The control section has a current command value calculating portion for calculating a current command value, a rotation calculating portion for calculating a rotation angle and an angular speed of the motor, a current command value correcting portion for correcting the current command value based on the rotation angle, a voltage command value calculating portion for calculating a voltage command value based on the current command value, a voltage command value correcting portion for correcting the voltage command value based on the current command value and the rotation angle and the angular speed, and a drive signal generating portion for generating a drive signal based on the voltage command value.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 21, 2013
    Assignee: Omron Automotive Electronics Co., Ltd.
    Inventors: Michisada Yabuguchi, Takenobu Nakamura, Shinichi Kuratani
  • Patent number: 8446116
    Abstract: The discharge control device for a power conversion system performs discharge control to discharge a capacitor parallel-connected to the input side of the power conversion system including a plurality of pairs of high-side and low-side switching elements connected in series and each controlled by a drive unit, by turning on the high-side and low-side switching elements of one of the pairs at the same time. At this time, the discharge control device inhibits an ON command from being inputted to the drive units for the high-side and low side switching elements of the other pairs.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: May 21, 2013
    Assignee: Denso Corporation
    Inventors: Junichi Fukuta, Tsuneo Maebara, Yusuke Shindo
  • Patent number: 8446112
    Abstract: The instant invention provides a magnetically controlled reciprocating engine having a unique electromagnet control system. The engine is constructed and arranged to operate from a stored power source such as batteries to provide extended run times by controlling the power supplied to the electromagnets in a manner that controls heat generation within the electromagnetic coils, thereby increasing coil life. The control system is also capable of controlling engine speed and/or torque outputs to make the engine versatile for a wide variety of uses. The system is constructed and arranged to be utilized on new or pre-existing engines of various configurations and may be utilized in other industries or devices that benefit from the use of electromagnets.
    Type: Grant
    Filed: April 24, 2012
    Date of Patent: May 21, 2013
    Assignee: Magnetic Miles, LLC
    Inventors: Stephen Miles, Michael Cristoforo
  • Patent number: 8446070
    Abstract: A micro-electro-mechanical device includes a substrate; a piezoelectric actuator disposed on the substrate; and an elastic member affixed to the substrate at a first end thereof, and mechanically coupled to the piezoelectric actuator; wherein the elastic member comprises at least one of: a notch, a groove, and a recess.
    Type: Grant
    Filed: May 22, 2012
    Date of Patent: May 21, 2013
    Assignee: International Business Machines Corporation
    Inventors: Harish Bhaskaran, Michel Despont
  • Patent number: 8446120
    Abstract: A power tool includes a tool housing, an electric motor inside the housing, and a power interface facilitating a connection to a power source. At least four actively-controlled power components are configured as an H-bridge to modulate a supply of power from the power interface to the electric motor. A user-actuated input unit outputs a first signal indicative of a desired power output level to the electric motor and a second signal indicative of a desired direction of current flow to the electric motor. A control unit controls the supply of power to the electric motor using two of said power components with synchronous rectification for pulse-width modulation (PWM) of the supply of power based on the first signal, and to control the direction of current flow to the electric motor using the other two of said power components based on the second signal.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: May 21, 2013
    Assignee: Black & Decker Inc.
    Inventors: Michael K. Forster, Matthew Velderman, John C. Vanko