Patents Examined by Wesley Markham
  • Patent number: 6998152
    Abstract: The present invention provides methods and apparatus for vaporizing and transporting precursor molecules to a process chamber for deposition of thin films on a substrate. The methods and apparatus include CVD solvents that comprise ionic liquids. The ionic liquids comprise salt compounds that have substantially no measurable vapor pressure (i.e., less than about 1 Torr at about room temperature), exhibit a wide liquid temperature range (i.e., greater than about 100° C.), and have low melting points (i.e., less than about 250° C.). A desired precursor is dissolved in a selected CVD solvent comprising an ionic liquid. The solvent and precursor solution is heated to or near the precursor volatilization temperature of the precursor. A stream of carrier gas is directed over or is bubbled through the solvent and precursor solution to distill and transport precursor molecules in the vapor phase to a deposition chamber. Conventional deposition processes may be used to deposit the desired thin film on a substrate.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: February 14, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Stefan Uhlenbrock
  • Patent number: 6699525
    Abstract: Carbon nanotubes are formed on a substrate by providing a coiled filament in a chemical vapor deposition chamber, supporting a substrate having a catalytic coating provided thereon inside the coiled filament, evacuating air, if present, from the chamber, heating the filament and applying a bias voltage between the filament and the substrate, introducing a reactant gas into the chamber, and pyrolyzing the reactant gas to deposit the carbon nanotubes on the catalytic coating. The substrate can be in the form of a rod or fiber and the carbon nanotubes can be deposited in a radially extending cluster on the substrate. The present invention also contemplates an apparatus for carrying out the inventive method.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: March 2, 2004
    Assignee: The Board of Trustees of Western Michigan University
    Inventor: Ahalapitiya H. Jayatissa
  • Patent number: 6673392
    Abstract: A method of vertically aligning pure carbon nanotubes on a large glass or silicon substrate at a low temperature using a low pressure DC thermal chemical vapor deposition method is provided. In this method, catalytic decomposition with respect to hydro-carbon gases is performed in two steps. Basically, an existing thermal chemical vapor deposition method using hydro-carbon gases such as acetylene, ethylene, methane or propane is used. To be more specific, the hydro-carbon gases are primarily decomposed at a low temperature of 400-500° C. by passing the hydro-carbon gases through a mesh-structure catalyst which is made of Ni, Fe, Co, Y, Pd, Pt, Au or an alloy of two or more of these materials.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: January 6, 2004
    Assignees: Samsung SDi Co., Ltd., Young-hee Lee
    Inventors: Young-hee Lee, Nae-sung Lee, Jong-min Kim
  • Patent number: 6660343
    Abstract: A composite layer of a sorbent, chemoselective, non-electrically-conducting polymer and nano-particles of an electrically conducting material dispersed throughout the polymer is formed on a substrate by pulsed laser deposition, matrix assisted pulsed laser evaporation or matrix assisted pulsed laser evaporation direct writing.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: December 9, 2003
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: R. Andrew McGill, Douglas B. Chrisey, Alberto Pique
  • Patent number: 6660342
    Abstract: A method of forming a film by a plasma CVD process in which a high density plasma is generated in the presence of a magnetic field wherein the electric power for generating the plasma has a pulsed waveform. The electric power typically is supplied by microwave, and the pulsed wave may be a complex wave having a two-step peak, or may be a complex wave obtained by complexing a pulsed wave with a stationary continuous wave.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: December 9, 2003
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akiharu Miyanaga, Tohru Inoue, Shunpei Yamazaki
  • Patent number: 6660341
    Abstract: A liquid crystal display device includes an alignment layer with constituent materials. The constituent materials have a stoichiometric relationship configured to provide a given pretilt angle. Liquid crystal material is provided in contact with the alignment layer. A method for forming an alignment layer for liquid crystal displays includes forming the alignment layer on a substrate by introducing an amount of material to adjust a stoichiometric ratio of constituent materials wherein the amount is determined to provide a given pretilt angle to the alignment layer. Ions are directed at the alignment layer to provide uniformity of the pretilt angle.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: December 9, 2003
    Assignee: International Business Machines Corporation
    Inventors: Paul S. Andry, Praveen Chaudhari, James P. Doyle, Eileen A. Galligan, James A. Lacey, Shui-Chih A. Lien, Minhua Lu
  • Patent number: 6656524
    Abstract: A continuous process for gas phase coating of polymerization catalyst. The polymerization catalyst is introduced in a gas phase plug flow type reactor wherein it is submitted to polymerization conditions in the presence of at least one monomer such that at least 95% by weight of the produced coated catalysts have a coating yield comprised between 0.5 to 2 times the average coating yield.
    Type: Grant
    Filed: February 1, 2001
    Date of Patent: December 2, 2003
    Assignee: BP Chemicals Limited
    Inventors: Daniel Claude Durand, Estelle Marie Joelle Meurice, Frederic Robert Marie Michel Morterol
  • Patent number: 6649215
    Abstract: A coated fiber strand including at least one heterogeneous region present in one or more coating layers. The heterogeneous region(s) preferably comprises a material useful for coding of the fiber. The optical fiber can include a primary coating layer and a secondary coating layer where the heterogeneous region(s) defines one or more colored stripes in or on the secondary coating layer. A method for forming a coated fiber, such as an optical fiber, includes introducing at least one coating layer onto a fiber strand such that one or more coating layers cover a portion of the surface of the strand. At least one heterogeneous region is introduced into or onto one or more coating layers, and the strand is cured to provide a desired product. A desired functionality, e.g., coding, can thus be introduced onto a fiber without adversely effecting subsequent processing steps, e.g., curing of the coating layer(s).
    Type: Grant
    Filed: September 12, 2001
    Date of Patent: November 18, 2003
    Assignee: Fitel USA Corp.
    Inventors: Daniel Harper, Jr., John M. Turnipseed, Carl R. Taylor, Priya L. Tabaddor, James R. Petisce
  • Patent number: 6638563
    Abstract: The present invention is directed toward the renewable surface treatment of medical devices such as contact lenses and medical implants. In particular, the present invention is directed to a method of modifying the surface of a medical device to increase its biocompatibility or hydrophilicity by coating the device with a removable hydrophilic polymer by means of reaction between reactive functionalities on the hydrophilic polymer which functionalities are complementary to reactive functionalities on or near the surface of the medical device at reaction temperatures of less than about 55° C.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: October 28, 2003
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph A. McGee, Paul L. Valint, Jr., James A. Bonafini, Jr., Joseph C. Salamone
  • Patent number: 6630199
    Abstract: A structure protected by a ceramic coating is prepared by providing a substrate having a surface, and depositing a layer of a sacrificial ceramic precursor material, preferably silica, onto the surface of the substrate. The method further includes furnishing a reactive gas, preferably an aluminum-containing gas, that is reactive with the sacrificial ceramic to produce a protective ceramic different from the sacrificial ceramic, and contacting the reactive gas to the layer of the precursor material to produce a protective ceramic layer.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: October 7, 2003
    Assignee: General Electric Company
    Inventors: Curtiss Mitchell Austin, Richard John Grylls
  • Patent number: 6623799
    Abstract: A method of chemically depositing a copper film in which a bromine or iodine-containing catalyst component is employed to enhance the deposition rate. The present invention is characterized in that the catalyst component floats on the film surface during the film formation. Accordingly, a film deposition having superior step coverage and high deposition rate is obtained.
    Type: Grant
    Filed: July 13, 2000
    Date of Patent: September 23, 2003
    Assignee: Genitech Co., Ltd.
    Inventors: Ji-Hwa Lee, Eui-Seong Hwang
  • Patent number: 6623793
    Abstract: A process for forming a retroreflective layer on a powder coated substrate is provided. The substrate is powder coated and the powder coating is subsequently partially cured. Reflective elements are then partially embedded in the semi-cured powder. The powder is then fully cured to permanently bond the reflective elements with the powder coating. The resultant retroreflective assembly can be used in any application requiring high detectability in poor visibility conditions, such as road signs and the like.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: September 23, 2003
    Assignee: Litetech, Inc.
    Inventors: Daniel Mushett, Randall Craft
  • Patent number: 6623792
    Abstract: This invention provides a method for producing a CD-R optical recording medium. A first stack at a first stage is created by forming on a substrate a recording layer containing an organic dyestuff and a metal layer. At least after a formation of the metal layer; the first stack is transported from the first stage along a transport path towards a second stage through an atmosphere having a relative humidity. The relative humidity is maintained at 40% or less. To control the relative humidity, a shielding plate may be provided around the transport path. An air conditioner may locally control the relative humidity of an area encircled by this shielding plate.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: September 23, 2003
    Assignee: Sony Corporation
    Inventor: Toshihiro Akimori
  • Patent number: 6620465
    Abstract: An improved method for applying a ceramic material, such as a thermal barrier coating to an article. A method for applying a ceramic material as a coating to a substrate article in which the thermal conductivity of the ceramic material is reduced or lowered is provided. The thermal conductivity of a coating applied by a physical vapor deposition (PVD) method is dependent upon its distance from the source(s) of material used for the coating. The thermal conductivity of the applied coating is altered by adjusting the position of the article undergoing the PVD process by increasing the distances of the article or workpiece from the ingot or source of ceramic material to provide a coating of lower thermal conductivity. In accordance with the present invention, the article to be coated is positioned at a distance required to achieve at least a 10% reduction in the thermal conductivity of the applied coating.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: September 16, 2003
    Assignee: General Electric Company
    Inventors: Joseph D. Rigney, David J. Wortman
  • Patent number: 6599559
    Abstract: The present invention is directed toward the renewable surface treatment of medical devices such as contact lenses and medical implants. In particular, the present invention is directed to a method of modifying the surface of a medical device to increase its biocompatibility or hydrophilicity by coating the device with a removable hydrophilic polymer by means of reaction between reactive functionalities on the hydrophilic polymer which functionalities are complementary to reactive functionalities on or near the surface of the medical device. The present invention is also directed to a contact lens or other medical device having such a surface coating.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: July 29, 2003
    Assignee: Bausch & Lomb Incorporated
    Inventors: Joseph A. McGee, Paul L. Valint, Jr., James A. Bonafini, Jr.
  • Patent number: 6599572
    Abstract: A process for growing an electrically conductive metalloid thin film on a substrate with a chemical vapor deposition process. A metal source material and a reducing agent capable of reducing the metal source material to a reduced state are vaporized and fed into a reaction space, where the metal source material and the reducing agent are contacted with the substrate. The reducing agent is a boron compound having at least one boron-carbon bond, and the boron compound forms gaseous by-products when reacted with the metal source material. Generally, the boron compound is an alkylboron compound with 0-3 halogen groups attached to the boron. The metal source material and the reducing agent may be fed continuously or in pulses during the deposition process.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: July 29, 2003
    Assignee: ASM Microchemistry Oy
    Inventors: Ville Antero Saanila, Kai-Erik Elers, Sari Johanna Kaipio, Pekka Juha Soininen
  • Patent number: 6582776
    Abstract: A photo-alignment layer having excellent long-term stability to light and heat is manufactured by coating a material for the photo-alignment layer, which contains a dichroic dye having two or more polymerizable groups per molecule, on a substrate, and exposing the coating layer to polarized light, thereby imparting a photo-alignment function, and polymerizing the polymerizable groups by heating or light exposure.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: June 24, 2003
    Assignees: Hong Kong University of Science And Technology, Dainippon Ink and Chemicals, Inc.
    Inventors: Wing C. Yip, Elena K. Prudnikova, Hoi S. Kwok, Vladimir G. Chigrinov, Vladimir M. Kozenkov, Hirokazu Takada, Masanobu Fukuda
  • Patent number: 6537623
    Abstract: An improved high temperature chemical treatment of deposited silica films wherein they are subjected to a reactive ambient comprising hydrogen and oxygen atoms. This method results in better elimination of residual undesirable oscillators so as to provide improved optical quality silica waveguides with reduced optical absorption.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: March 25, 2003
    Assignee: Dalsa Semiconductor Inc.
    Inventors: Luc Ouellet, Manuel Grondin
  • Patent number: 6506443
    Abstract: A method of applying surface-modifying auxiliary substances to the working area interior surfaces of die molds for the production of molded products, in particular made of rubber or plastics. The auxiliary substance is supplied in the form of a gas or vapor to the interior surfaces of the die mold, which is integrated into the processing machine, and the gas or vapor is condensed there.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: January 14, 2003
    Assignee: Firma Carl Freudenberg
    Inventors: Klaus-Jürgen Peschges, Steffen Kosack, Andreas Hartmann, Günter Hofmann
  • Patent number: 6506446
    Abstract: An anti-fog article is obtained by coating a substrate with an anti-fog coating material to form thereon an anti-fog coating film that is hydrophillic, moisture-absorptive, insoluble and excellent in surface hardness. The anti-fog coating material contains a polyacrylic acid compound, polyvinyl alcohol and acetylacetone, and optionally sodium silicate.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: January 14, 2003
    Assignees: Canon Kabushiki Kaisha, Nakato Laboratory, Inc.
    Inventors: Tohru Yamamoto, Shigeo Yoshida, Hatsumi Ikari, Keiji Ikemori, Keiji Ohtaka, Hideo Ukuda