Patents Examined by Willis Wolfe, Jr.
  • Patent number: 8265852
    Abstract: A control system includes a first module, a fuel determination module, a temperature error correction module, and a hydrocarbon injection control module. The first module determines a temperature difference between a desired inlet temperature of a particulate filter (PF) and an outlet temperature of a first catalyst. The fuel determination module determines an uncorrected desired fuel value based on the temperature difference, an ambient temperature, and a mass flow of exhaust gas. The temperature error correction module generates a desired fuel value based on the uncorrected desired fuel value. The hydrocarbon injection control module controls a hydrocarbon injector based on the desired fuel value.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 11, 2012
    Inventors: Ognyan N. Yanakiev, Charles E. Solbrig
  • Patent number: 8260526
    Abstract: A method and a device, a computer program and a computer program product for implementing a method for calibrating a fuel injector of an internal combustion engine, including the following: a) Specifying a first relationship between an injection quantity and an actuating variable of the fuel injector for implementing the injection quantity, b) Specifying a setpoint injection quantity, c) Specifying at least one setpoint value for the actuating variable of the fuel injector according to the first relationship, or implementing the setpoint injection quantity, d) Determining an indicated work resulting from the implementation of the at least one setpoint value for the actuating variable, e) Comparing a variable as a function of the determined resulting indicated work to an expected value, f) Correcting the at least one setpoint value for the actuating variable of the fuel injector as a function of the comparison result.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: September 4, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Axel Loeffler, Wolfgang Fischer, Roland Karrelmeyer, Gerald Graf
  • Patent number: 8235023
    Abstract: The invented engine comprises a working cylinder with a piston, pre-ignition chamber with spark plug and a combustion chamber which is cylindrical in shape, a fuel-air mixture injector, which is a compressor cylinder with a piston and fuel delivery device and channels for supplying the fuel and air into the combustion chamber. It also has channels for injection of the fuel-air mixture into the combustion chamber. There is a check valve between the fuel supply channel and the compressor cylinder. The pre-ignition chamber has the shape of a cup or flattened cone. The diameter of the base of the pre-ignition chamber equals the diameter of the combustion chamber. The engine has one or more pairs of channels for delivering the fuel-air mixture to the combustion chamber. The axes of these channels are paired and angled towards each other.
    Type: Grant
    Filed: October 20, 2010
    Date of Patent: August 7, 2012
    Inventor: Alexandr Nikolaevich Sergeev
  • Patent number: 8239122
    Abstract: A method is described for operating an engine of a vehicle, the engine having a combustion chamber. The method may include controlling a stability of the vehicle in response to a vehicle acceleration; and adjusting spark timing in the combustion chamber of the engine in response to a knock indication, and further adjusting spark timing in response to the vehicle acceleration to reduce surge.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: August 7, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: Thomas G. Leone, Ralph Wayne Cunningham, Eric Tseng, Davor David Hrovat, Mrdjan J. Jankovic, Diana Yanakiev
  • Patent number: 8234054
    Abstract: An engine provided with a variable timing mechanism (B) able to control a closing timing of an intake valve (7) and a variable compression ratio mechanism (A) able to change a mechanical compression ratio. At the time of engine startup, the closing timing of the intake valve (7) is made the most delayed position so that the least intake air is fed to the inside of the combustion chamber (5) and the mechanical compression ratio is made the maximum compression ratio.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: July 31, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukihiro Nakasaka, Daisaku Sawada, Daisuke Akihisa, Eiichi Kamiyama
  • Patent number: 8230844
    Abstract: The invention involves a device for exhaust gas recirculation of a combustion engine, with an intake module and an exhaust gas recirculation tube projecting with its gas outlet end into the intake module. Openings are created in the peripheral wall of the gas outlet end of the exhaust gas recirculation tube so that the device is easier to manufacture, wherein peripheral wall parts stay in place as bars to which a baffle plate is coupled for the exhaust gas stream.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 31, 2012
    Assignee: BOA Balg-und Kompensatoren-Technologie GmbH
    Inventors: Andreas Schill, Bernhard Hörner, Harald Timm
  • Patent number: 8229655
    Abstract: Systems and methods useful for detecting a combustion fault in a combustion engine include determining cylinder power density values for cylinders present on the engine during its operation and determining cylinder imbalance parameters for the cylinders, based on the cylinder power density values. The cylinder imbalance parameters are compared with a provided diagnostic threshold value.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Yue-Yun Wang, Ibrahim Haskara, Chol-Bum M. Kweon, Frederic Anton Matekunas, Paul Anthony Battiston
  • Patent number: 8220443
    Abstract: An EGR system includes a high-pressure EGR unit and a low-pressure EGR unit. During the steady operation of an internal combustion engine, the high-pressure EGR gas and the low-pressure EGR gas are mixed with each other at a mixture ratio, in which the ratio of the high-pressure EGR gas amount to the entire EGR gas amount is higher than that in a known mixture ratio, and then recirculated back to the internal combustion engine. In the engine speed-up transitional operation period, the opening amount of a high-pressure EGR valve is adjusted to the opening amount that is much smaller than the target opening amount corresponding to the target operation mode. Thus, it is possible to suppress occurrence of the situation where the entire EGR gas amount is excessive in the period in which the low-pressure EGR gas amount does not decrease by a sufficient amount.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: July 17, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroki Murata, Masahiro Nagae, Hajime Shimizu, Shigeki Nakayama, Tomomi Onishi
  • Patent number: 8224554
    Abstract: A fuel injector for an internal combustion engine is provided which has a fuel supply path and a nozzle chamber. The fuel supply path extends a spray hole. The nozzle chamber is defined in the fuel supply path. A nozzle is disposed within the nozzle chamber to establish or block a fluid communication between the fuel supply path and the spray hole. A fuel pressure sensor is installed in the fuel injector so as to be exposed to the fuel in the nozzle chamber. Specifically, the fuel pressure sensor is located closer to the spray hole than a prior art structure in which the fuel pressure sensor is installed in a fuel supply pipe, thus resulting in increased accuracy in measuring a change in pressure of the fuel arising from the spraying of the fuel from the spray hole.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: July 17, 2012
    Assignee: Denso Corporation
    Inventors: Jun Kondo, Tooru Taguchi
  • Patent number: 8215286
    Abstract: An electronic control system for a carburetor, includes: a transmission device linked to a valve; an electric actuator for driving the valve; and an electronic control unit for controlling operation of the electric actuator, the electric actuator being disposed between the transmission device and the electronic control unit, The transmission device, the electric actuator and the electronic control unit are housed and held in a casing mounted on the carburetor. A ventilation apparatus which places an interior of the casing in communication with an outside atmosphere relative to the carburetor is connected to the casing.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: July 10, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Yoshinori Maekawa, Keiichiro Bungo, Yasuhide Ono, Hayato Matsuda
  • Patent number: 8214129
    Abstract: A method for registering a content change in a fuel system of a motor vehicle, where the fuel system is configured to receive a first fuel and a second fuel into a common space. A first condition is correlated to receiving the first fuel, and a second condition is correlated to receiving the second fuel. The method comprises admitting fuel to the fuel system and indicating that the first fuel has been admitted if a condition responsive to admitting the fuel matches the first condition and does not match the second condition.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: July 3, 2012
    Assignee: Ford Global Technologies, LLC
    Inventor: Ross Dykstra Pursifull
  • Patent number: 8214133
    Abstract: An apparatus includes a parallel computation unit including an input port and an output port and a one-dimensional computational fluid dynamics model. The input port is configured to sample at a time t1 a boundary condition signal for the one-dimensional computational fluid dynamics model and the output port is configured to provide an output signal before the boundary condition signal is sampled at a time t2.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: July 3, 2012
    Assignee: Colorado State University Research Foundation
    Inventor: Matthew Viele
  • Patent number: 8214135
    Abstract: A particulate filter ash loading prediction method including the steps of determining a maximum average time for the filter; performing a calculation of a running average of time between regenerations of the filter; calculating an end-of-service life ratio of the filter dependent upon the maximum average time and the running average. The method further includes the steps of determining a delta pressure adjustment factor to compensate for ash loading of the filter depending upon the end-of-service life ratio; and comparing the delta pressure adjustment factor to a predetermined maximum delta pressure value, and, if the delta pressure adjustment factor exceeds the predetermined maximum normalized delta pressure adjustment factor, then indicating that a service or replacement of the filter is needed due to the ash loading.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: July 3, 2012
    Assignee: Deere & Company
    Inventors: Ryan Nevin, Antonio Triana, Danan Dou, Taner Tuken
  • Patent number: 8209108
    Abstract: This device is applied to an internal combustion engine that has a fuel injection valve for injecting fuel directly into the combustion chamber, a supercharger and an exhaust purification device. As a fuel injection from the fuel injection valve, a post-injection is executed separately from the fuel injection for torque generation. The device includes an air amount sensor provided on the intake passageway upstream of the supercharger, and a pressure sensor provided on the intake passageway downstream of the supercharger. A correction term is calculated based on the rate of change of the air pressure detected by the pressure sensor. An upper-limit injection amount is set based on the engine rotation speed, the passageway air amount detected by the air amount sensor, the correction term and a main injection amount. Using the upper-limit injection amount, a target post-injection amount is restricted.
    Type: Grant
    Filed: November 22, 2007
    Date of Patent: June 26, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasuhiko Otsubo, Masanobu Katayama
  • Patent number: 8209112
    Abstract: A method and a device are provided for operating an internal combustion engine which allow for an improved diagnosis of the valve mechanism of cylinders of the internal combustion engine. For this purpose, a variable characteristic of a suction performance of a cylinder of the internal combustion engine is ascertained. The variable characteristic of the suction performance is ascertained as a function of the mass flow flowing into an intake manifold of the internal combustion engine and of a change of the intake manifold pressure during an intake phase of the cylinder.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: June 26, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Hartmann, Georg Mallebrein, Nicolas Ide, Andreas Roth, Lutz Reuschenbach, Frank Schiller, Markus Deissler, Michael Drung
  • Patent number: 8205593
    Abstract: Method and apparatus to improve the efficiency of internal combustion engines in which compression and combustion of an Air/Fuel mixture is carried out without a compression stroke as used in conventional internal combustion engines and expansion of the combusted mixture is performed to increase the expansion ratio resulting in an increase in the amount of work extracted. An externally compressed Air/Fuel Mixture is combusted in a variable volume combustion chamber and expanded into a conventional cylinder displacing a power piston to produce rotation of a crankshaft to drive a vehicle or other device. Separation of the variable volume combustion chamber from the conventional cylinder eliminates the conventional Otto Cycle compression stroke and provides a substantially larger expansion ratio than the compression ratio in a conventional engine.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: June 26, 2012
    Inventor: William I. de Versterre
  • Patent number: 8209107
    Abstract: An electric motor for a fuel pump is provided with a shutdown switch positioned intermediate an inverter, and its control coil. In this location, the shutdown function can be achieved without heavy components. In another feature, when the fuel pump is shut down, a signal is sent upstream to a voltage regulator associated with a generator, such that the voltage supplied downstream by the generator can be reduced to eliminate any potential voltage spike due to the shutdown of the electric motor. The electric motor with shutdown switch enables low weight fault tolerant flux regulated machines.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: June 26, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory I. Rozman, Jacek F. Gieras
  • Patent number: 8204674
    Abstract: In an apparatus for controlling an engine, an input switching unit switches an input signal to be inputted to an input path from a crank signal to a cam signal when it is determined that the crank signal is abnormal. An event signal generating unit generates a crank-input event signal while it is determined that the crank signal is abnormal by an abnormality determining unit. The crank-input event signal has a level that repetitively changes in a predetermined direction. Each level change of the crank-input event signal is synchronized with a corresponding level change of the crank signal. A monitoring unit monitors a level change of the crank-input event signal while it is determined that the crank signal is abnormal by the abnormality determining unit.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: June 19, 2012
    Assignee: Denso Corporation
    Inventor: Haruhiko Kondo
  • Patent number: 8196569
    Abstract: In a method for operating an internal combustion engine having exhaust gas recirculation, air is supplied to at least one combustion chamber via an intake manifold at least partially closable with the aid of a final control element, and a part of the exhaust gases flowing into an exhaust pipe is conducted via an EGR channel, which is at least partially closable with the aid of an EGR valve unit, into an area of the intake manifold, which lies between the final control element and the combustion chamber. A first variable, which characterizes the mass flow of the gas conducted through the EGR channel, is ascertained from a set of state variables of the internal combustion engine, which apply for an operating state in which the engine is in overrun operation and the final control element is essentially closed.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: June 12, 2012
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Bleile, Horst Mueller
  • Patent number: 8200415
    Abstract: The invention relates to a method for controlling the operating mode of an internal combustion engine (1) comprising several cylinders (3) and an injection system (4) with one injection unit (5) per cylinder (3). According to said method: a digital measuring signal, which characterizes the combustion of fuel (6) in the internal combustion engine (1), is first determined; said digital measuring signal is then transformed into a frequency range; a misfiring of the ignition is detected using the amplitude information of the transformed measuring signal and if a misfiring has occurred, the injection of the individual cylinders (3) is deactivated sequentially for a predefined period and for each cylinder the corresponding digital measuring signal that characterizes said cylinder is determined and transformed into the frequency range and a misfiring cylinder (3) is identified during the evaluation of the transformed measuring signal using the amplitude information.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: June 12, 2012
    Assignee: Conti Temic microelectronic GmbH
    Inventors: Reinhold Hagel, Mehmet Tuna, Emmanuel Routier, Kayhan Goeney