Patents Examined by Xue H Liu
  • Patent number: 10836124
    Abstract: A press for making a continuous sheet from composite material has upper and lower press belts having respective lower and upper reaches that vertically spacedly confront one another across a press gap having an upstream inlet end and a downstream outlet end, and that have transversely spaced outer edges extending in the direction. The belts are advanced direction and thereby draw a mat of the composite material in the inlet end, compress it into the sheet, and expelling the sheet from the downstream end. Two transversely spaced elastic seal strips extend in the direction in the gap and are each engaged between a respective one of the outer edges of the upper belt and the respective outer edge of the lower belt. Each belt has at each of the edges a surface in engagement with the respective edge strip and having an average peak-to-valley height of less than 1 ?m.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: November 17, 2020
    Assignee: SIEMPELKAMP MASCHINEN-UND ANLAGENBAU GmbH
    Inventors: Lothar Sebastian, Klaus Schuermann, Michael Schoeler, Joerg Heinz Hueneke, Horst Weiss
  • Patent number: 10836098
    Abstract: A 3D printing method for binary stereolithography 3D printer includes following steps of: controlling a binary stereolithography 3D printer (20) to retrieve a plurality of gray-scale slice images (802,822,842); mapping a pixel value of each pixel of each gray-scale slice images (802,822,842) from a pixel value full range to an accumulation value range for obtaining a printing parameter of each pixel; selecting one of the gray-scale slice images (802,822,842) orderly; controlling a binary lighting module (204) of the binary stereolithography 3D printer (20) to irradiate for generating a layer of physical slice model (320,322,340,342) according to the printing parameter of each pixel of the selected gray-scale slice image (802,822,842); and repeatedly executing aforementioned steps to generate a physical 3D model (8?) constituted by a stack of multiple of the physical slice models (320,322,340,342).
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: November 17, 2020
    Assignees: XYZPRINTING, INC., KINPO ELECTRONICS, INC.
    Inventor: Peng-Yang Chen
  • Patent number: 10818433
    Abstract: Dielectric ceramic particulates are introduced into thin a sheet of pre-cured elastomer to form a sheet. Successive layers of the sheets may then be laminated together to form a finished article. An electric field may be applied to the article during a curing process while the article is at a temperature near a Curie temperature of the dielectric ceramic particulates to increase a dielectric constant of the article. As each sheet may be different from each other in the finished article, the resulting finished article may have anisotropic dielectric and mechanical properties. Similarly, tiled dielectric ceramic structures may be introduced into the elastomers layers to generate materials with varying dielectric constants.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: October 27, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: Sean Jason Keller, Tristan Thomas Trutna, Vincenzo Casasanta, III, David R. Perek
  • Patent number: 10800078
    Abstract: A terminal insert article includes a metal terminal, and a resin molded article in which the terminal is inserted. The molded article is formed by injection molding. When a position of the molded article into which molten resin is injected at time of the injection molding is referred to as a resin injection position, the resin injection position is formed in a projecting shape. The molded article includes a spherical surface part at an opposite position from the resin injection position. The spherical surface part has a spherical surface shape swollen out in a direction away from the resin injection position. A component that constitutes a rotation angle sensor, which detects a rotation angle of a rotatably-supported shaft, is inserted in the molded article.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: October 13, 2020
    Assignee: DENSO CORPORATION
    Inventors: Takehito Mizunuma, Takamitsu Kubota, Yoshiyuki Kono, Haruhiko Suzuki
  • Patent number: 10792848
    Abstract: A method is provided to fabricate an injection molded piece with a weakened portion in an injection molding system having a cavity defined by a fixed mold part and a moveable mold part. The method comprises injecting raw material in a liquid state into the cavity to form the injection molded piece; moving a weakening insert into the injection molded piece from a first surface of the injection molded piece; injecting a gas to the first surface of the injection molded piece with a controlled pressure, wherein moving the weakening insert into the injection molded piece and injecting the gas are performed while the injection molded piece is in the liquid state.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: October 6, 2020
    Assignee: Ford Global Technologies LLC
    Inventor: Jacob Alexander
  • Patent number: 10786936
    Abstract: A three-dimensional printing method for a three-dimensional printing system including a tank, a platform, an injection module, a warning module, a curing module, and a control module is provided. The control module is electrically connected to the curing module, the injection module, and the warning module. The method includes: analyzing a required amount of the liquid forming material corresponding to a three-dimensional object; obtaining a safe amount of the liquid forming material in the tank; and comparing the required amount and the safe amount, wherein the control module provides a response signal to the injection or warning module when the safe amount is less than the required amount. The injection module receives the response signal to inject the liquid forming material to the tank. The warning module receives the response signal to remind a user to provide the liquid forming material to the tank.
    Type: Grant
    Filed: January 14, 2018
    Date of Patent: September 29, 2020
    Assignees: XYZprinting, Inc., Kinpo Electronics, Inc.
    Inventors: Tsai-Yi Lin, Chien-Te Lee, Chen-Fu Huang, An-Hsiu Lee
  • Patent number: 10780640
    Abstract: An additive manufacturing system, and associated methods, comprise an image projection system comprising a plurality of image projectors that project a composite image onto a build area within a resin pool. The composite image comprises a plurality of sub-images arranged in an array. The properties of each sub-image and the alignment of the position of each sub image within the composite image can be adjusted using a stack of filters comprising: 1) an irradiance mask that normalizes irradiance, 2) a gamma adjustment mask that adjusts sub-image energy based on a reactivity of the resin, 3) a warp correction filter that provides geometric correction, and 4) an edge blending bar at one or more sub-image edges.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: September 22, 2020
    Assignee: Intrepid Automation
    Inventors: Ben Wynne, Jamie Lynn Etcheson, Christopher Sean Tanner, Robert Lee Mueller, Ivan Dejesus Chousal
  • Patent number: 10767377
    Abstract: A concrete formwork spreading device includes a tie rod including opposing ends, and a pair of end caps connected to the opposing ends of the tie rod. Each one (1) of the pair of end caps includes a contacting face, wherein the contacting face is flat. Each one (1) of the opposing ends of the tie rod is one (1) of permanently connected or removably connected to an associated one (1) of one (1) pair of end caps. The contacting face of each one (1) of the pair of end caps is spaced apart by a distance, the distance is equal to a thickness of a concrete wall formed using the device. The distance between the contacting face of each one (1) of the pair of end caps is one (1) of fixed or adjustable.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: September 8, 2020
    Inventor: Jason L. Axmaker
  • Patent number: 10766178
    Abstract: Provided is a screw that is for use in an injection molding machine and that makes it possible to benefit from the kneading effect of a multi-start screw while minimizing the received friction resistance. The screw for an injection molding machine is provided with a first stage 20 on the upstream side and a second stage 30 on the downstream side. The screw for an injection molding machine is characterized in that: the first stage 20 is provided with a compression section 22 comprising a main scraper 25 and an auxiliary scraper 26 having a smaller outer diameter than the main scraper 25; and the second stage 30 is provided with a multi-start screw section 31, said multi-start screw section being provided on the upstream side and comprising a plurality of scrapers, and a fin kneading section 32 provided downstream from the multi-start screw section.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: September 8, 2020
    Assignees: U-MHI PLATECH CO., LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Munehiro Nobuta, Naoki Toda, Toshihiko Kariya, Takeshi Yamaguchi, Kiyoshi Kinoshita
  • Patent number: 10751946
    Abstract: According to one example there is provided a build material measurement module to determine build material characteristics from a build material to be analyzed.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 25, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Isabel Sanz Ananos, Santiago Sanz Ananos, Sergi Culubret
  • Patent number: 10737449
    Abstract: A system for manufacturing a composite article includes a resin-wetting control layer configured to be placed in contact with a composite ply of a composite preform. The resin-wetting control layer is configured complementary to a ply surface of the composite ply.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: August 11, 2020
    Assignee: The Boeing Company
    Inventors: Karl R. Bernetich, James W. Kohlbrenner, Mark S. Wilenski
  • Patent number: 10730264
    Abstract: Bridge tape comprised of thermally foamable composition, useful for applying coating material through holes in the tape to a substrate beneath the tape, after which the holes can be sealed by heating to cause the foamable composition to foam and expand the foam to seal the holes.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: August 4, 2020
    Assignee: TESA SE
    Inventor: Robert Fallon
  • Patent number: 10703027
    Abstract: Provided are induction heating cells including pressure bladders used for supporting dies and methods of using these induction heating cells. A pressure bladder may be disposed between a die and a bolster of the cell. Even when the bolster is deformed during operation of the cell, the pressure bladder continues to provide uniform support to the die thereby preserving integrity of the die and prevents its cracking or braking. As such, the cell may be operated at a higher processing pressure inside the cavity formed by the die without further strengthening the bolster. The bolster is allowed to deform without compromising the integrity of the die. The deformation of the bolster is compensated by the shape change of the pressure bladder. The number and/or position of the bladders in the cell may depend on the shape of processed parts.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: July 7, 2020
    Assignee: The Boeing Company
    Inventors: Marc R. Matsen, David S. Nansen, Lee C. Firth, Carey E. Wilkinson, Gregory J. Hickman, William C. Dykstra
  • Patent number: 10703040
    Abstract: [Object] It is an object to provide a method for forming a three-dimensional object that suppresses generation of streaks on the three-dimensional object, which streaks are parallel to a main scanning direction. [Means of Realizing the Object] A method for forming a three-dimensional object includes a slice information calculation step (step ST23) of dividing three-dimensional data of the three-dimensional object into a plurality of layers so as to calculate cross-sectional slice information of each of the layers; and a unit-layer formation step (step ST27) of forming each of the layers based on the cross-sectional slice information. The unit-layer formation step (step ST27) is repeated a plurality of times. The unit-layer formation step (step ST27) includes a printing step (step ST27A) of extruding inks onto a work surface while moving the extruders in the main scanning direction so as to form a single print path.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: July 7, 2020
    Assignee: MIMAKI ENGINEERING CO., LTD.
    Inventors: Masaya Nagahari, Hirofumi Hara
  • Patent number: 10697091
    Abstract: A device for twisting a flat, fibrillated strip for producing artificial turf is disclosed. The device includes a hollow shaft having a central axis of rotation, a deflecting element that is mounted on the hollow shaft and that has a swing region, and a limiting element that is disposed on the hollow shaft. The hollow shaft allows the strip to be continuously passed through a hollow space of the hollow shaft. The deflecting element includes a swing pivot that is offset from the central axis. When the hollow shaft is rotated around its central axis, the swing region of the deflecting element is swung outward from the central axis to a swung-out position. As a result, the strip is rested against the swing region. When the deflecting element is in its swung-out position, the strip is rested against the limiting element that limits the outward deflection of the strip.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: June 30, 2020
    Assignee: TARKETT INC.
    Inventor: Jürgen Morton-Finger
  • Patent number: 10685753
    Abstract: The present disclosure provides systems and methods for fast molten salt reactor fuel-salt preparation. In one implementation, the method may comprise providing fuel assemblies having fuel pellets, removing the fuel pellets and spent fuel constituents from the fuel assemblies, granulating the removed fuel pellets or process feed to a chlorination process, processing the granular spent fuel salt into chloride salt by ultimate reduction and chlorination of the uranium and associated fuel constituents chloride salt solution, enriching the granular spent fuel salt, chlorinating the enriched granular spent fuel salt to yield molten chloride salt fuel, analyzing, adjusting, and certifying the molten chloride salt fuel for end use in a molten salt reactor, pumping the molten chloride salt fuel and cooling the molten chloride salt fuel, and milling the solidified molten chloride salt fuel to predetermined specifications.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: June 16, 2020
    Assignee: Metatomic, Inc.
    Inventor: Donald Ken Baer
  • Patent number: 10661487
    Abstract: A system for manufacturing a particulate-binder composite article including a mold defining a mold cavity, a first opening into the mold cavity, and a second opening into the mold cavity, a mass of a particulate material received in the mold cavity, a binder source in selective fluid communication with the mold cavity by way of the first opening, the binder source including a binder material, a first filter disposed across the first opening, the first filter being permeable to the binder material and substantially impermeable to the particulate material, and a second filter disposed across the second opening, the second filter being permeable to air and substantially impermeable to the particulate material.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: May 26, 2020
    Assignee: The Boeing Company
    Inventors: Karl R. Bernetich, Robert R. Ignatuk, James W. Kohlbrenner
  • Patent number: 10661484
    Abstract: A mold for in-mold foam-molding of a polyolefin-based resin for producing a molded article includes a first mold part, a second mold part, and a divided mold that holds an insert material, wherein the insert material has a protrusion part, the divided mold is formed on the first and the second mold parts in correspondence with the protrusion part of the insert material, the first mold part has a first holding surface, the second mold part has a divided mold member having a second holding surface and a biasing part that guides the divided mold member movably in the mold opening/closing direction and constantly biases the divided mold member toward the first holding surface, and the base portion of the protrusion part of the insert material is configured for being held between the first and second holding surfaces by the divided mold.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: May 26, 2020
    Assignee: KANEKA CORPORATION
    Inventors: Yuki Tobimatsu, Masahiko Sameshima
  • Patent number: 10661480
    Abstract: A preform molding system is disclosed that includes a cavity half that is mountable to a stationary platen of an injection molding machine and a core half that is mountable to a moving platen of the injection molding machine. The preform molding system includes a mold stack assembly having a cavity portion and a core portion. The cavity portion is coupled to the cavity half and includes a cavity insert, and the core portion is coupled to the core half and includes a core insert, a pair of neck rings, and a stripper ring. The core insert has an undercut that defines an annular protrusion on an internal surface of a preform that is created in the mold stack assembly. The preform molding system is configured to permit in sequence, retraction of the pair of neck rings away from the core insert and ejection of the preform from the core insert via the stripper ring.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: May 26, 2020
    Assignee: Mold-Masters (2007) Limited
    Inventor: Richard De Almeida
  • Patent number: 10646452
    Abstract: The present disclosure provides improved stripfilm based pharmaceutical products (e.g., for enhancing dissolution and bioavailability). More particularly, the present disclosure provides improved systems/methods for fabricating stripfilm based pharmaceutical products by utilizing higher viscosity film forming precursors and drying methods that accomplish improved/faster drying and provide improved/excellent content uniformity of active pharmaceutical agents in the stripfilm based pharmaceutical products. Exemplary systems/methods advantageously use high viscosity, bio-compatible polymeric precursors, (optional use of surface modified drug powders), and convective drying for fabrication of thin films loaded with nano and/or micro sized particles of poorly water-soluble active pharmaceutical ingredients (APIs) to achieve improved active content uniformity and very fast dissolution from poorly water soluble actives, while accomplishing fast drying during the fabrication process.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: May 12, 2020
    Assignees: New Jersey Institute of Technology, Rutgers, The State University of New Jersey
    Inventors: Rajesh N. Dave, Ramani Susarla, Boris Khusid, Anagha A. Bhakay, Ecevit A. Bilgili, Fernando Muzzio