Patents Examined by Younus Meah
  • Patent number: 9605290
    Abstract: The present disclosure relates to biocatalysts and its uses for the efficient preparation of eslicarbazepine, eslicarbazepine acetate, and analogs thereof.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: March 28, 2017
    Assignee: Codexis, Inc.
    Inventors: Anupam Gohel, Derek J. Smith, Brian Wong, Joly Sukumaran, Wan Lin Yeo, Steven J. Collier, Scott Novick
  • Patent number: 9598685
    Abstract: Disclosed herein are botulinum neurotoxin (BoNT) polypeptides with a modified receptor binding domain of Clostridial botulinum serotype B (B-Hc), comprising one or more substitution mutations corresponding to substitution mutations in serotype B, strain 1, V1118M; Y1183M; E1191M; E1191I; E1191Q; E1191T; S1199Y; S1199F; S1199L; SI 20 IV; or combinations thereof. Specific combination mutations include E1 191M and S1199L, E1191M and S1199Y, E1191M and S1199F, E1191Q and S1199L, E1191Q and S 1199Y, or E 1191 Q and S 1199F. Other substitution mutations are also disclosed. Isolated modified receptor binding domains, chimeric molecules, pharmaceutical compositions, and methods of using the same are also disclosed.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 21, 2017
    Assignee: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Min Dong, Lisheng Peng, Pål Erik Gustav Stenmark, Ronnie Per Arne Berntsson
  • Patent number: 9592279
    Abstract: An object of the present invention is to provide a substance which can be used as an active ingredient for improving neuropathic pain having a mechanism of action different from those of currently available agents and, therefore, provide an improving agent for neuropathic pain which rarely interacts with currently available agents and also does not have adverse reactions similar to those of currently available agents. An improving agent for neuropathic pain due to a hyperalgesic response of the present invention for resolution is characterized by comprising, as an active ingredient, a lyase (an elimination enzyme) which has an activity of degrading a chondroitin sulfate chain of a chondroitin sulfate proteoglycan, and is typified by chondroitinase ABC which selectively removes chondroitin sulfate and dermatan sulfate of a proteoglycan.
    Type: Grant
    Filed: April 8, 2013
    Date of Patent: March 14, 2017
    Assignees: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, SEIKAGAKU CORPORATION
    Inventors: Yukihiro Matsuyama, Kenji Kadomatsu, Shiro Imagama, Akiomi Tanaka
  • Patent number: 9567617
    Abstract: What is aimed at is provision of an inexpensive and efficient saccharification method for lignocellulose using a thermostable xylanase and provision of a mutant xylanase that has a substitute amino acid residue, and that exhibits stable activity even under severe conditions in which enzymes easily inactivate, and that provides an initial rate of reaction not significantly reduced as compared to a wild-type xylanase corresponding to the mutant xylanase. Provided is a method of producing a saccharified product of lignocellulose, including contacting a lignocellulosic raw material with a thermostable xylanase, and a mutant xylanase that provides an initial rate of reaction that is at least 70% of that provided by a wild-type xylanase corresponding thereto, that has a xylanase activity after heat treatment at 50° C. for 24 hours that is at least 50% of its xylanase activity before the heat treatment, and that has a substitute amino acid residue.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: February 14, 2017
    Assignees: MITSUI CHEMICALS, INC., MEIJI SEIKA PHARMA CO., LTD.
    Inventors: Hisaaki Yanai, Hiroki Tamai, Masami Osabe, Fumikazu Yokoyama, Kaoru Okakura, Atsushi Inoue
  • Patent number: 9562240
    Abstract: A method of biologically producing an aromatic carboxylic acid by contacting a substrate containing an aromatic carboxylic acid having a para-hydroxy group with a biocatalyst that removes the para-hydroxy group.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: February 7, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Won Jae Choi, Jin Ho Ahn, Jong Won Byun, Young Wan Ha
  • Patent number: 9550982
    Abstract: The present disclosure relates to polypeptides having transaminase activity, polynucleotides encoding the polypeptides, and methods of using the polypeptides.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: January 24, 2017
    Assignee: Codexis, Inc.
    Inventors: Christopher K. Savile, Emily Mundorff, Jeffrey C. Moore, Paul N. Devine, Jacob M. Janey
  • Patent number: 9545450
    Abstract: Described herein are methods of making targeting peptides conjugated to recombinant lysosomal enzymes by modifying the amino (N)-terminus and one or more lysine residues on recombinant human lysosomal enzymes using a first crosslinking agent to give rise to first crosslinking agent modified recombinant human lysosomal enzymes, modifying the first amino acid within a short linker at the amino (N)-terminus on a variant IGF-2 peptide using a second crosslinking agent to give rise to a second crosslinking agent modified variant IGF-2 peptide, and then conjugating the first crosslinking agent modified recombinant human lysosomal enzyme to the second crosslinking agent modified variant IGF-2 peptide containing a short linker. Also described herein are conjugates synthesized characterized as having higher affinities for the IGF2/CI-MPR receptor and cellular uptake using the methods disclosed herein. Also described herein are treatment methods using the disclosed conjugates.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: January 17, 2017
    Assignee: Amicus Therapeutics Inc.
    Inventor: Hung Do
  • Patent number: 9534238
    Abstract: The invention relates to enzymatic methods for hydroxylation in position 2 or 3 of substituted or unsubstituted, linear or branched aliphatic hydrocarbons.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: January 3, 2017
    Assignee: NOVOZYMES A/S
    Inventors: Martin Hofrichter, Katrin Scheibner, Rene Ullrich, Matthias Kinne, Sebastian Peter, Henrik Lund, Lisbeth Kalum
  • Patent number: 9528132
    Abstract: The present invention relates to a polynucleotide encoding a recombinant scaffolding polypeptide comprising at least a signal peptide, a Cellulose Binding Domain, two cohesin domains and an S-layer Homology domain, wherein said isolated polynucleotide preferably comprises all or an active part of the nucleotide sequence as set forth in SEQ ID NO:2. The present invention further relates to vectors comprising such polynucleotides, recombinant lactic acid bacteria, and method for degrading a cellulosic biomass using such recombinant lactic acid bacteria.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: December 27, 2016
    Assignee: CARBIOS
    Inventors: Roberto Mazzoli, Enrica Pessione, Loredana Tarraran, Chiara Gandini
  • Patent number: 9526786
    Abstract: Provided are compositions comprising a cocaine esterase (CocE) and a compound that thermostabilizes the CocE. Also provided are methods of thermostabilizing a cocaine esterase. Additionally provided are methods of treating a mammal undergoing a cocaine-induced condition. Methods of determining whether a compound is a thermostabilizing agent for a protein are also provided. Uses of the above-described compositions for the treatment of a cocaine-induced condition is additionally provided. Additionally provided is an isolated nucleic acid encoding a CocE polypeptide having the substitutions L169K and G173Q, and the CocE polypeptide encoded by that nucleic acid, and pharmaceutical compositions thereof. Further provided is the use of that composition for the manufacture of a medicament for the treatment of a cocaine-induced condition and for the treatment of a cocaine-induced condition.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: December 27, 2016
    Assignees: The Trustee of Columbia University in the City of New York, The Regents of the University of Michigan
    Inventors: Donald W. Landry, James H. Woods, Roger K. Sunahara, Diwahar L. Narasimhan, Joanne MacDonald, Milan N. Stojanovic, John J. Tesmer, Remy L. Brim
  • Patent number: 9523106
    Abstract: Subject of the invention is a process for the production of L-carnitine, wherein a ?-lactone, which is a 4-(halomethyl)oxetane-2-one, is converted into L-carnitine, wherein the process comprises an enzymatic conversion of the ?-lactone into (R)-4-halo-3-hydroxybutyric acid or (R)-4-halo-3-hydroxybutyric acid ester.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: December 20, 2016
    Assignee: LONZA LTD.
    Inventors: Ellen Klegraf, Manuela Avi
  • Patent number: 9512459
    Abstract: Amino acid mutation(s) can be introduced to Sclerotinia sclerotiorum- or Aspergillus niger-derived glucose dehydrogenase to obtain a glucose dehydrogenase variant with significantly enhanced productivity in E. coli. The glucose dehydrogenase of the present invention is low reactive with xylose.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 6, 2016
    Assignee: ULTIZYME INTERNATIONAL LTD.
    Inventors: Koji Sode, Kazushige Mori
  • Patent number: 9506087
    Abstract: The present invention provides host cells having improved sugar utilization or co-utilization, methods of producing host cells having improved sugar utilization or co-utilization, and methods of using host cells having improved sugar utilization or co-utilization. The present invention provides E. coli strains that co-utilize glucose and xylose in the presence of glucose and xylose, wherein the cell produces the product.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: November 29, 2016
    Assignee: Codexis, Inc.
    Inventors: Jonathan A. Vroom, Fernando Valle
  • Patent number: 9506042
    Abstract: The present invention provides a novel glucose dehydrogenase that has excellent substrate specificity, specific activity, thermal stability, and the like, and that is suitable for use in SMBG sensors. The present invention provides a purified polypeptide comprising an amino acid sequence having at least 80% identity to the sequence of SEQ ID NO: 1 and having glucose dehydrogenase activity.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: November 29, 2016
    Assignee: Toyobo Co., Ltd.
    Inventors: Yosuke Sumida, Rie Hirao, Yuu Utashima, Hiroaki Kitazawa, Hiroshi Aiba, Takahide Kishimoto, Shusaku Yanagidani
  • Patent number: 9493801
    Abstract: Described herein are microorganisms that produce methionine and related products from endogenous genes in a transsulfuration pathway, as well as from exogenous genes providing a direct sulfhydrylation pathway. Novel genes that are useful for methionine and SAMe production are disclosed.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: November 15, 2016
    Assignee: CJ CHEILJEDANG CORPORATION
    Inventors: Brian Brazeau, Jin-Sook Chang, Kwang Myung Cho, Young Wook Cho, Mervyn Desouza, Holly J. Jessen, So-Young Kim, Wei Niu, Fernando A. Sanchez-Riera, Yong-Uk Shin, Hyewon Um
  • Patent number: 9493792
    Abstract: The process for the production of the yellow pigment can include the steps of (a) culturing Bacillus sp. GSK07 bacteria; and (b) extracting the yellow pigment from the bacterial culture using a solvent. The solvent for extraction can be an alcohol, e.g., ethanol, methanol, or both ethanol and methanol. The pigment includes D-limonene.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: November 15, 2016
    Assignee: KING SAUD UNIVERSITY
    Inventors: George Seghal Kiran, Naif Abdullah Al-Dhabi, Mariadhas Valan Arasu, Joseph Selvin
  • Patent number: 9469864
    Abstract: The present invention relates to methods of use of glycosyltransferases and related novel compounds. The invention exploits the reversibility of glycosyltransferases to generate new sugars, unnatural biomolecules and numerous one-pot reactions for generation of new biomolecules having varied backbones such as enediynes, vancomycins, bleomycins, anthracyclines, macrolides, pluramycins, aureolic acids, indolocarbazoles, aminglycosides, glycopeptides, polyenes, coumarins, benzoisochromanequinones, calicheamicins, erythromycin, avermectins, ivermectins, angucyclines, cardiac glycosides, steroids or flavinoids. In preferred embodiments, the invention specifically relates to biosynthesis of anticancer (the enediyne calicheamicin, CLM), anthelmintic agents (the macrolides avermectin, ivermectin and erythromycin) and antibiotic (the glycopeptide vancomycin, VCM) natural product-based drugs developed by reversible, bidirectional glycosyltransferase-catalyzed reactions.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: October 18, 2016
    Assignee: WISCONSIN ALUMNI RESEARCH FOUNDATION
    Inventors: Jon S. Thorson, Changsheng Zhang, Byron R. Griffith
  • Patent number: 9464306
    Abstract: The present invention relates to a method for producing an L-amino acid by reacting an enantiomeric mixture of an N-succinyl amino acid with L-succinylase in the presence of N-acylamino acid racemase to specifically hydrolyze the L-form. In particular, the present invention relates to a method for producing an L-amino acid in high yield by using an N-succinyl amino acid whose dissolved concentration is particularly low as a raw material to perform a reaction while precipitating the produced L-amino acid out of the reaction system. The present invention enables efficient production of an L-amino acid having high optical purity, particularly an L-amino acid useful as a raw material for products such as pharmaceutical products and agricultural chemicals.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: October 11, 2016
    Assignee: KANEKA CORPORATION
    Inventors: Masutoshi Nojiri, Tozo Nishiyama, Naoaki Taoka
  • Patent number: 9458465
    Abstract: Disclosed herein are compositions and methods for repairing cell membranes. In addition, the invention relates to therapeutic compositions comprising nucleotides and/or polypeptides of the invention in combination with a pharmaceutically acceptable carrier, wherein the composition facilitates the repair of cell membranes. Moreover, the invention relates to the treatment and/or prevention of pathological conditions associated with cell membrane damage.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: October 4, 2016
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Noah Weisleder, Chuanxi Cai, Jianjie Ma
  • Patent number: 9453244
    Abstract: The present invention relates to a method for producing a monoalkene comprising the step of enzymatically converting an alkyl monoester. The conversion preferably makes use of an enzyme which belongs to the group of terpene synthases or to the family of prenyltransferases. Moreover, the present invention relates to the use of a terpene synthase or of a prenyltransferase for enzymatically converting an alkyl monoester into a monoalkene.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 27, 2016
    Assignees: Global Bioenergies, Scientist of Fortune S.A.
    Inventors: Philippe Marlière, Maria Anissimova, Mathieu Allard