Patents by Inventor A. Andrew Carey

A. Andrew Carey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11597877
    Abstract: Disclosed herein is a material, comprising a first metal halide that is operative to function as a scintillator; where the first metal halide excludes cesium iodide (ScI), strontium iodide (SrI2), cesium bromide (CsBr), thallium doped cesium iodide (CsI:Tl), europium doped strontium iodide (SrI2:Eu), europium doped barium iodide (BaI2;EU), cerium doped strontium iodide (SrI2:Ce), cerium doped barium iodide (BaI2:Ce), cerium doped lanthanum bromide (LaBr3:Ce), and cerium doped lutetium iodide (LuI3:Ce); and a surface layer comprising a second metal halide that is disposed on a surface of the first metal halide; where the second metal halide has a lower water solubility than the first metal halide.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: March 7, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Andrew Carey, Peter Carl Cohen, Mark S. Andreaco
  • Patent number: 11555147
    Abstract: The present disclosure discloses, in one arrangement, a scintillator material made of a metal halide with one or more additional group-13 elements. An example of such a compound is Ce:LaBr3 with thallium (Tl) added, either as a codopant or in a stoichiometric admixture and/or solid solution between LaBr3 and TlBr. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 17, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Publication number: 20220188833
    Abstract: The disclosure herein describes enabling transactions from within an extended reality (XR) system using behavioral biometrics. A user using the XR system is detected and behavioral biometric data of the user is automatically collected. A user profile is identified based on the biometric data, wherein the user profile is associated with a subset of content and payment data. Access to the content is provided to the user via the XR system. A transaction request is received that is associated with the content. Based on the transaction request, behavioral biometric data of the user is automatically collected again. The association between the biometric data and the user profile is verified. Based on verifying that the second biometric token is associated with the user profile, a transaction is initiated based on the transaction request, whereby a transaction processing entity is configured to authenticate the user based on the biometric data and facilitate the transaction.
    Type: Application
    Filed: December 10, 2021
    Publication date: June 16, 2022
    Inventors: Travis J. MAY, Andrew Carey JOYCE, Briana BECK
  • Publication number: 20210340442
    Abstract: Disclosed herein is a material, comprising a first metal halide that is operative to function as a scintillator; where the first metal halide excludes cesium iodide, strontium iodide, and cesium bromide; and a surface layer comprising a second metal halide that is disposed on a surface of the first metal halide; where the second metal halide has a lower water solubility than the first metal halide.
    Type: Application
    Filed: July 19, 2021
    Publication date: November 4, 2021
    Inventors: Alexander Andrew Carey, Peter Carl Cohen, Mark S. Andreaco
  • Patent number: 11107600
    Abstract: The present disclosure discloses rare earth metal halide scintillators compositions with reduced hygroscopicity. Compositions in specific implementations include three group of elements: Lanthanides, (La, Ce, Lu, Gd or V), elements in group 17 of the periodic table of elements (CI, Br and I) and elements of group 13 (B, AI, Ga, In, TI), and any combination of these elements. Examples of methods for making the compositions are also disclosed.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: August 31, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, A. Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 11098248
    Abstract: Disclosed herein is a material, comprising a first metal halide that is operative to function as a scintillator; where the first metal halide excludes cesium iodide, strontium iodide, and cesium bromide; and a surface layer comprising a second metal halide that is disposed on a surface of the first metal halide; where the second metal halide has a lower water solubility than the first metal halide.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: August 24, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Andrew Carey, Peter Carl Cohen, Mark S. Andreaco
  • Patent number: 10961452
    Abstract: Disclosed herein is a method including manufacturing a powder having a composition of formula (1), M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third, and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of about 2 to about 3.5, “b” has a value of 0 to about 5, “c” has a value of 0 to about 5 “d” has a value of 0 to about 1, where “b” and “c”, “b” and “d”, or “c” and “d” cannot both be equal to zero simultaneously, where M1 is a rare earth element comprising gadolinium, yttrium, lutetium, scandium, or a combination of thereof, M2 is aluminum or boron, M3 is gallium, and M4 is a dopant; and heating the powder to a temperature of 500 to 1700° C. in an oxygen containing atmosphere to manufacture a crystalline scintillator.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: March 30, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco
  • Patent number: 10774440
    Abstract: A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: September 15, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Alexander Andrew Carey
  • Publication number: 20190169499
    Abstract: Disclosed herein is a method including manufacturing a powder having a composition of formula (1), M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third, and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of about 2 to about 3.5, “b” has a value of 0 to about 5, “c” has a value of 0 to about 5 “d” has a value of 0 to about 1, where “b” and “c”, “b” and “d”, or “c” and “d” cannot both be equal to zero simultaneously, where M1 is a rare earth element comprising gadolinium, yttrium, lutetium, scandium, or a combination of thereof, M2 is aluminum or boron, M3 is gallium, and M4 is a dopant; and heating the powder to a temperature of 500 to 1700° C. in an oxygen containing atmosphere to manufacture a crystalline scintillator.
    Type: Application
    Filed: February 4, 2019
    Publication date: June 6, 2019
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco
  • Publication number: 20190153614
    Abstract: A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.
    Type: Application
    Filed: January 18, 2019
    Publication date: May 23, 2019
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Alexander Andrew Carey
  • Patent number: 10227709
    Abstract: A method of growing a rare-earth oxyorthosilicate crystal, and crystals grown using the method are disclosed. The method includes preparing a melt by melting a first substance including at least one first rare-earth element and providing an atmosphere that includes an inert gas and a gas including oxygen.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: March 12, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Alexander Andrew Carey
  • Patent number: 10222490
    Abstract: Apparatuses, computer-readable mediums, and methods are provided. In one embodiment, a positron emission tomography (“PET”) detector array is provided which includes a plurality of crystal elements arranged in a two-dimensional checkerboard configuration. In addition, there are empty spaces in the checkerboard configuration. In various embodiments, the empty spaces are filled with passive shielding, transmission source assemblies, biopsy instruments, surgical instruments, and/or electromagnetic sensors. In various embodiments, the crystal elements and the transmission source assemblies simultaneously perform emission/transmission acquisitions.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: March 5, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Christian J. Michel, Maurizio Conti, Ronald Grazioso, Peter Carl Cohen, A. Andrew Carey, Larry Byars
  • Patent number: 10197685
    Abstract: Disclosed herein is a method including manufacturing a powder having a composition of formula (1), M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third, and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of about 2 to about 3.5, “b” has a value of 0 to about 5, “c” has a value of 0 to about 5 “d” has a value of 0 to about 1, where “b” and “c”, “b” and “d”, or “c” and “d” cannot both be equal to zero simultaneously, where M1 is a rare earth element comprising gadolinium, yttrium, lutetium, scandium, or a combination of thereof, M2 is aluminum or boron, M3 is gallium, and M4 is a codopant; and heating the powder to a temperature of 500 to 1700° C. in an oxygen containing atmosphere to manufacture a crystalline scintillator.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 5, 2019
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco
  • Publication number: 20180355245
    Abstract: Disclosed herein is a material, comprising a first metal halide that is operative to function as a scintillator; where the first metal halide excludes cesium iodide, strontium iodide, and cesium bromide; and a surface layer comprising a second metal halide that is disposed on a surface of the first metal halide; where the second metal halide has a lower water solubility than the first metal halide.
    Type: Application
    Filed: August 20, 2018
    Publication date: December 13, 2018
    Inventors: Alexander Andrew Carey, Peter Carl Cohen, Mark S. Andreaco
  • Patent number: 10087367
    Abstract: A halide material, such as scintillator crystals of LaBr3:Ce and SrI2:Eu, with a passivation surface layer is disclosed. The surface layer comprises one or more halides of lower water solubility than the scintillator crystal that the surface layer covers. A method for making such a material is also disclosed. In certain aspects of the disclosure, a passivation layer is formed on a surface of a halide material such as a scintillator crystal of LaBr3:Ce of SrI2:Eu by fluorinating the surface with a fluorinating agent, such as F2 for LaBr3:Ce and HF for SrI2:Eu.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: October 2, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Alexander Andrew Carey, Peter Carl Cohen, Mark S. Andreaco
  • Publication number: 20180223186
    Abstract: The present disclosure discloses, in one arrangement, a scintillator material made of a metal halide with one or more additional group-13 elements. An example of such a compound is Ce:LaBr3 with thallium (Tl) added, either as a codopant or in a stoichiometric admixture and/or solid solution between LaBr3 and TlBr. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Application
    Filed: March 30, 2018
    Publication date: August 9, 2018
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Patent number: 9966162
    Abstract: The present disclosure discloses, in one arrangement, a scintillator material made of a metal halide with one or more additional group-13 elements. An example of such a compound is Ce:LaBr3 with thallium (Tl) added, either as a codopant or in a stoichiometric admixture and/or solid solution between LaBr3 and TlBr. In another arrangement, the above single crystalline iodide scintillator material can be made by first synthesizing a compound of the above composition and then forming a single crystal from the synthesized compound by, for example, the Vertical Gradient Freeze method. Applications of the scintillator materials include radiation detectors and their use in medical and security imaging.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: May 8, 2018
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Piotr Szupryczynski, A. Andrew Carey, Mark S. Andreaco, Matthias J. Schmand
  • Publication number: 20170153335
    Abstract: Disclosed herein is a method including manufacturing a powder having a composition of formula (1), M1aM2bM3cM4dO12??(1) where O represents oxygen, M1, M2, M3, and M4 represents a first, second, third, and fourth metal that are different from each other, where the sum of a+b+c+d is about 8, where “a” has a value of about 2 to about 3.5, “b” has a value of 0 to about 5, “c” has a value of 0 to about 5 “d” has a value of 0 to about 1, where “b” and “c”, “b” and “d”, or “c” and “d” cannot both be equal to zero simultaneously, where M1 is a rare earth element comprising gadolinium, yttrium, lutetium, scandium, or a combination of thereof, M2 is aluminum or boron, M3 is gallium, and M4 is a codopant; and heating the powder to a temperature of 500 to 1700° C. in an oxygen containing atmosphere to manufacture a crystalline scintillator.
    Type: Application
    Filed: December 1, 2015
    Publication date: June 1, 2017
    Inventors: Peter Carl Cohen, Alexander Andrew Carey, Mark S. Andreaco
  • Patent number: 9664800
    Abstract: A scintillator element is disclosed where the scintillator element includes a scintillator formed of a scintillation material capable of converting non-visible radiation into scintillation light, wherein the scintillator has a plurality of laser-etched micro-voids within the scintillator, each micro-void having an interior surface, and an intrinsic reflective layer is formed on the interior surface of at least some of the micro-voids, wherein the intrinsic reflective layer is formed from the scintillation material.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: May 30, 2017
    Assignees: University of Tennessee Research Foundation, Siemens Medical Solutions USA, Inc.
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Matthias J. Schmand, James L. Corbeil, Alexander Andrew Carey, Robert A. Mintzer, Charles L. Melcher, Merry A. Koschan
  • Publication number: 20160170043
    Abstract: A scintillator element is disclosed where the scintillator element includes a scintillator formed of a scintillation material capable of converting non-visible radiation into scintillation light, wherein the scintillator has a plurality of laser-etched micro-voids within the scintillator, each micro-void having an interior surface, and an intrinsic reflective layer is formed on the interior surface of at least some of the micro-voids, wherein the intrinsic reflective layer is formed from the scintillation material.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Mark S. Andreaco, Peter Carl Cohen, Matthias J. Schmand, James L. Corbeil, Alexander Andrew Carey, Robert A. Mintzer, Charles L. Melcher, Merry A. Koschan