Patents by Inventor A. Dorian Challoner
A. Dorian Challoner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8393212Abstract: Micromachined disc resonator gyroscopes (DRGs) are disclosed designed to be virtually immune to external temperature and stress effects. The DRG is a vibratory gyroscope that measures angular rate which is designed to have reduced sensitivity to external thermal and mechanical stress. The DRG features an integrated isolator that may be fabricated on the same wafer as the electrode wafer forming a plurality of integrated isolator beams. In addition, the DRG may include a wafer level hermetical vacuum seal, flip chip ball grid array (BGA), and vertical electrical feedthrough to improve reliability and to reduce manufacturing cost. An additional carrier layer may be used with shock stops, vertical electrical feedthrough, and the flip chip BGA. A pyrex or quartz cap with embedded getter and shock stops can be employed.Type: GrantFiled: April 1, 2009Date of Patent: March 12, 2013Assignee: The Boeing CompanyInventors: Howard H. Ge, A. Dorian Challoner
-
Patent number: 8333112Abstract: Techniques for reducing the frequency split between the Coriolis-coupled modes in disc resonator gyroscopes (DRGs) by perturbing the mass distribution on the disc resonator based on an identified model are disclosed. A model-identification method of tuning a resonator comprises perturbing the mass and measuring a frequency response matrix of the resonator. The frequency response matrix includes a plurality of inputs and a plurality of outputs and the resonator has a plurality of coupled resonance modes. A reduced structural mechanics matrix model of the resonator in sensor and actuator coordinates is identified from the measured frequency response matrix and analyzed to determine generalized eigenvectors of the structural mechanics model and their variations due to selected mass perturbations which is then estimated to improve degeneracy of the plurality of coupled resonance modes based on the generalized eigenvectors of the mass and the stiffness.Type: GrantFiled: June 9, 2009Date of Patent: December 18, 2012Assignee: The Boeing CompanyInventors: David M. Schwartz, Dong-Joon Kim, Robert T. M'Closkey, A. Dorian Challoner
-
Patent number: 8327526Abstract: A micromachined thermal and mechanical isolator for MEMS die that may include two layers, a first layer with an active temperature regulator comprising a built-in heater and temperature sensor and a second layer having mechanical isolation beams supporting the die. The isolator may be inserted between a MEMS die of a disc resonator gyroscope (DRG) chip and the leadless chip carrier (LCC) package to isolate the die from stress and temperature gradients. Thermal and mechanical stress to the DRG can be significantly reduced in addition to mitigating temperature sensitivity of the DRG chip. The small form can drastically reduce cost and power consumption of the MEMS inertial sensor and enable new applications such as smart munitions, compact and integrated space navigation solutions, with significant potential cost savings over the existing inertial systems.Type: GrantFiled: May 27, 2009Date of Patent: December 11, 2012Assignee: The Boeing CompanyInventors: Howard H. Ge, A. Dorian Challoner
-
Patent number: 8332181Abstract: The present disclosure provides a small size hand-held device for aligning two or more structures by attaching the device to master and slave structures and providing real-time position/orientation data to enable the accurate alignment of the structures. The handheld device includes a sensor box containing at least one inertial sensor, such as for example, a gyroscope (such as a disc resonator gyroscope) or an accelerometer. The handheld device further includes an alignment socket designed to mate with an alignment key that may be fixed to the structures to be aligned, and a display for showing a position data output received from the at least one inertial sensor. The handheld device may further include a processor for processing and outputting data to the display and/or the handheld device may include a transmitter for transmitting the data to a central processing unit.Type: GrantFiled: December 9, 2009Date of Patent: December 11, 2012Assignee: The Boeing CompanyInventors: Yong Liu, A. Dorian Challoner
-
Patent number: 8322028Abstract: A single layer micromachined thermal and mechanical isolator may be bonded between a microelectromechanical system (MEMS) die and package. Small bond pads of the isolator are attached to the periphery of the die. The isolator material may be chosen to match that of the die, reducing CTE mismatch. Long thin isolation beams can be used to provide thermal isolation against external temperature changes, which may be conducted through the package. Weak and flexible beams can be used to tolerate large displacements with very little resistance. Thus, excessive stress or distortion to the package, from either CTE mismatch or external stress, may be absorbed by the isolator and will not be transmitted to the MEMS die. Beam rigidity may be designed to attenuate vibration of particular frequency range. The isolator can be readily inserted into an existing disc resonator gyroscope package in one thermal compression bond step.Type: GrantFiled: April 1, 2009Date of Patent: December 4, 2012Assignee: The Boeing CompanyInventors: Howard H. Ge, A. Dorian Challoner
-
Patent number: 8205495Abstract: Tuning an axisymmetric resonator such as in a disc resonator gyroscope (DRG) is disclosed. Frequency tuning a DRG in a single step informed by a systematic physical model of the resonator structure, sensing and actuation elements, such as a finite element model, is provided. The sensitivity of selected trimming positions on the resonator to reducing asymmetry terms is determined via perturbations of the systematic model. As well, the dependence of the parameters of model transfer functions between actuation and sensing elements on resonator asymmetry are systematically determined. One or two measured transfer functions may then be analyzed according to the systematic model to fully determine the needed asymmetry correction components of the DRG. One or two of four groups of four electrostatic bias electrodes or four groups of four laser trimming locations for the DRG are utilized to correct the asymmetry components which can give rise to mistuning.Type: GrantFiled: June 9, 2009Date of Patent: June 26, 2012Assignee: The Boeing CompanyInventor: A. Dorian Challoner
-
Publication number: 20100300201Abstract: A micromachined thermal and mechanical isolator for MEMS die that may include two layers, a first layer with an active temperature regulator comprising a built-in heater and temperature sensor and a second layer having mechanical isolation beams supporting the die. The isolator may be inserted between a MEMS die of a disc resonator gyroscope (DRG) chip and the leadless chip carrier (LCC) package to isolate the die from stress and temperature gradients. Thermal and mechanical stress to the DRG can be significantly reduced in addition to mitigating temperature sensitivity of the DRG chip. The small form can drastically reduce cost and power consumption of the MEMS inertial sensor and enable new applications such as smart munitions, compact and integrated space navigation solutions, with significant potential cost savings over the existing inertial systems.Type: ApplicationFiled: May 27, 2009Publication date: December 2, 2010Applicant: The Boeing CompanyInventors: Howard H. Ge, A. Dorian Challoner
-
Patent number: 7836765Abstract: Sensing motion of multiple degrees of freedom for an integral inertial measurement unit provided through the operation of a single centrally mounted planar disc resonator having a single driven mode in a single vacuum enclosure is disclosed. The resonator comprises a circumferentially slotted disc having multiple internal capacitive electrodes within the slots in order to excite a single in-plane driven vibration and sense in-plane vibration modes or motion of the resonator. In addition, vertical electrodes disposed below and/or above the resonator may also be used to sense out-of-plane vibration or motion. Acceleration sensing in three orthogonal axes can be obtained by sensing two lateral modes of the disc resonator in the plane of the disc from the internal electrodes and a vertical mode from the vertical electrodes.Type: GrantFiled: July 31, 2007Date of Patent: November 23, 2010Assignee: The Boeing CompanyInventors: A. Dorian Challoner, David Whelan
-
Publication number: 20100251818Abstract: Micromachined disc resonator gyroscopes (DRGs) are disclosed designed to be virtually immune to external temperature and stress effects. The DRG is a vibratory gyroscope that measures angular rate which is designed to have reduced sensitivity to external thermal and mechanical stress. The DRG features an integrated isolator that may be fabricated on the same wafer as the electrode wafer forming a plurality of integrated isolator beams. In addition, the DRG may include a wafer level hermetical vacuum seal, flip chip ball grid array (BGA), and vertical electrical feedthrough to improve reliability and to reduce manufacturing cost. An additional carrier layer may be used with shock stops, vertical electrical feedthrough, and the flip chip BGA. A pyrex or quartz cap with embedded getter and shock stops can be employed.Type: ApplicationFiled: April 1, 2009Publication date: October 7, 2010Applicant: The Boeing CompanyInventors: Howard H. Ge, A. Dorian Challoner
-
Publication number: 20100251817Abstract: A single layer micromachined thermal and mechanical isolator may be bonded between a microelectromechanical system (MEMS) die and package. Small bond pads of the isolator are attached to the periphery of the die. The isolator material may be chosen to match that of the die, reducing CTE mismatch. Long thin isolation beams can be used to provide thermal isolation against external temperature changes, which may be conducted through the package. Weak and flexible beams can be used to tolerate large displacements with very little resistance. Thus, excessive stress or distortion to the package, from either CTE mismatch or external stress, may be absorbed by the isolator and will not be transmitted to the MEMS die. Beam rigidity may be designed to attenuate vibration of particular frequency range. The isolator can be readily inserted into an existing disc resonator gyroscope package in one thermal compression bond step.Type: ApplicationFiled: April 1, 2009Publication date: October 7, 2010Applicant: The Boeing CompanyInventors: Howard H. Ge, A. Dorian Challoner
-
Patent number: 7793541Abstract: Packaging techniques for planar resonator gyroscopes, such as disc resonator gyroscopes (DRGs) are disclosed. A gyroscope die may be attached to its package substrate on a central disc area that is inboard of its embedded electrodes. This configuration eliminates contact of the die with the package substrate beneath the embedded electrodes allowing the internal electrode support structure to expand or contract freely without stress as its temperature changes. The central attachment can also be used diminish the package temperature gradients on the periphery of the die, if the thermal conductivity of the central disc attachment material is higher than the package substrate. Temperature gradients across the resonator also lead to thermoelastic damping asymmetry and rate drift. In addition, the electrical connections to the die may be formed by vertical vias within the central disc attachment area or by thin wirebonds to peripheral I/O pads on the gyro chip.Type: GrantFiled: June 4, 2007Date of Patent: September 14, 2010Assignee: The Boeing CompanyInventor: A. Dorian Challoner
-
Publication number: 20100024546Abstract: Sensing motion of multiple degrees of freedom for an integral inertial measurement unit provided through the operation of a single centrally mounted planar disc resonator having a single driven mode in a single vacuum enclosure is disclosed. The resonator comprises a circumferentially slotted disc having multiple internal capacitive electrodes within the slots in order to excite a single in-plane driven vibration and sense in-plane vibration modes or motion of the resonator. In addition, vertical electrodes disposed below and/or above the resonator may also be used to sense out-of-plane vibration or motion. Acceleration sensing in three orthogonal axes can be obtained by sensing two lateral modes of the disc resonator in the plane of the disc from the internal electrodes and a vertical mode from the vertical electrodes.Type: ApplicationFiled: July 31, 2007Publication date: February 4, 2010Applicant: The Boeing CompanyInventors: A. Dorian Challoner, David Whelan
-
Publication number: 20090301194Abstract: Tuning an axisymmetric resonator such as in a disc resonator gyroscope (DRG) is disclosed. Frequency tuning a DRG in a single step informed by a systematic physical model of the resonator structure, sensing and actuation elements, such as a finite element model, is provided. The sensitivity of selected trimming positions on the resonator to reducing asymmetry terms is determined via perturbations of the systematic model. As well, the dependence of the parameters of model transfer functions between actuation and sensing elements on resonator asymmetry are systematically determined. One or two measured transfer functions may then be analyzed according to the systematic model to fully determine the needed asymmetry correction components of the DRG. One or two of four groups of four electrostatic bias electrodes or four groups of four laser trimming locations for the DRG are utilized to correct the asymmetry components which can give rise to mistuning.Type: ApplicationFiled: June 9, 2009Publication date: December 10, 2009Applicant: The Boeing CompanyInventor: A. Dorian Challoner
-
Publication number: 20090301193Abstract: Techniques for reducing the frequency split between the Coriolis-coupled modes in disc resonator gyroscopes (DRGs) by perturbing the mass distribution on the disc resonator based on an identified model are disclosed. A model-identification method of tuning a resonator comprises perturbing the mass and measuring a frequency response matrix of the resonator. The frequency response matrix includes a plurality of inputs and a plurality of outputs and the resonator has a plurality of coupled resonance modes. A reduced structural mechanics matrix model of the resonator in sensor and actuator coordinates is identified from the measured frequency response matrix and analyzed to determine generalized eigenvectors of the structural mechanics model and their variations due to selected mass perturbations which is then estimated to improve degeneracy of the plurality of coupled resonance modes based on the generalized eigenvectors of the mass and the stiffness.Type: ApplicationFiled: June 9, 2009Publication date: December 10, 2009Applicants: The Boeing Company, The Regents of the University of CaliforniaInventors: David M. Schwartz, Dong-Joon Kim, Robert T. M'Closkey, A. Dorian Challoner
-
Patent number: 7624494Abstract: An inertial sensor includes a mesoscaled disc resonator comprised of micro-machined substantially thermally non-conductive wafer with low coefficient of thermal expansion for sensing substantially in-plane vibration, a rigid support coupled to the resonator at a central mounting point of the resonator, at least one excitation electrode within an interior of the resonator to excite internal in-plane vibration of the resonator, and at least one sensing electrode within the interior of the resonator for sensing the internal in-plane vibration of the resonator. The inertial sensor is fabricated by etching a baseplate, bonding the substantially thermally non-conductive wafer to the etched baseplate, through-etching the wafer using deep reactive ion etching to form the resonator, depositing a thin conductive film on the through-etched wafer.Type: GrantFiled: December 13, 2006Date of Patent: December 1, 2009Assignees: California Institute of Technology, The Boeing CompanyInventors: A. Dorian Challoner, Kirill V. Shcheglov
-
Patent number: 7493814Abstract: Operation of a planar resonator gyroscope with in-plane parasitic modes of vibration to obtain improved performance is disclosed. A planar resonator gyroscope, such as a disc resonator gyroscope, may be operated with embedded electrodes. The embedded electrodes may be disposed adjacent to the planar resonator and proximate to one or more anti-nodes of a parasitic vibration mode. A sensed amplitude of the parasitic mode is applied in differential signals used to operate the gyroscope. A feedback controller for damping the parasitic mode applies a drive voltage generated from the proportional voltage to one or more drive electrodes adjacent to the planar resonator disposed proximate to one or more anti-nodes of the parasitic vibration mode of the planar resonator. Parasitic in-plane modes may be thus damped in operating the gyroscope with active damping applied through an analog operational amplifier or digital feedback.Type: GrantFiled: December 22, 2006Date of Patent: February 24, 2009Assignee: The Boeing CompanyInventors: David Whelan, A. Dorian Challoner
-
Publication number: 20080295622Abstract: Packaging techniques for planar resonator gyroscopes, such as disc resonator gyroscopes (DRGs) are disclosed. A gyroscope die may be attached to its package substrate on a central disc area that is inboard of its embedded electrodes. This configuration eliminates contact of the die with the package substrate beneath the embedded electrodes allowing the internal electrode support structure to expand or contract freely without stress as its temperature changes. The central attachment can also be used diminish the package temperature gradients on the periphery of the die, if the thermal conductivity of the central disc attachment material is higher than the package substrate. Temperature gradients across the resonator also lead to thermoelastic damping asymmetry and rate drift. In addition, the electrical connections to the die may be formed by vertical vias within the central disc attachment area or by thin wirebonds to peripheral I/O pads on the gyro chip.Type: ApplicationFiled: June 4, 2007Publication date: December 4, 2008Applicant: The Boeing CompanyInventor: A. Dorian Challoner
-
Patent number: 7437253Abstract: Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.Type: GrantFiled: July 29, 2005Date of Patent: October 14, 2008Assignees: The Boeing Company, California Institute of TechnologyInventors: Kirill V. Shcheglov, Ken J. Hayworth, A. Dorian Challoner, Chris S. Peay
-
Patent number: 7401397Abstract: The present invention discloses an inertial sensor comprising a planar mechanical resonator with embedded sensing and actuation for substantially in-plane vibration and having a central rigid support for the resonator. At least one excitation or torquer electrode is disposed within an interior of the resonator to excite in-plane vibration of the resonator and at least one sensing or pickoff electrode is disposed within the interior of the resonator for sensing the motion of the excited resonator. In one embodiment, the planar resonator includes a plurality of slots in an annular pattern; in another embodiment, the planar mechanical resonator comprises four masses; each embodiment having a simple degenerate pair of in-plane vibration modes.Type: GrantFiled: March 9, 2006Date of Patent: July 22, 2008Assignees: The Boeing Company, California Institute of TechnologyInventors: Kirill V. Shcheglov, A. Dorian Challoner
-
Patent number: 7396478Abstract: A Multiple Internal Seal Ring (MISR) Micro-Electro-Mechanical System (MEMS) vacuum packaging method that hermetically seals MEMS devices using MISR. The method bonds a capping plate having metal seal rings to a base plate having metal seal rings by wafer bonding the capping plate wafer to the base plate wafer. Bulk electrodes may be used to provide conductive paths between the seal rings on the base plate and the capping plate. All seals are made using only metal-to-metal seal rings deposited on the polished surfaces of the base plate and capping plate wafers. However, multiple electrical feed-through metal traces are provided by fabricating via holes through the capping plate for electrical connection from the outside of the package through the via-holes to the inside of the package. Each metal seal ring serves the dual purposes of hermetic sealing and providing the electrical feed-through metal trace.Type: GrantFiled: September 5, 2007Date of Patent: July 8, 2008Assignees: California Institute of Technology, The Boeing CompanyInventors: Ken J. Hayworth, Karl Y. Yee, Kirill V. Shcheglov, Youngsam Bae, Dean V. Wiberg, A. Dorian Challoner, Chris S. Peay