Patents by Inventor A. Esai UMENEI

A. Esai UMENEI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200312279
    Abstract: A system provides an elongated display that has a touchscreen with a multi-user interactive display area that is accessible simultaneously by at least two users. A sensor may monitor users at or near the interactive display area of the touchscreen, such as to transmit a sensor signal that identifies the presence of a user, which may be used to determine a location of the user relative to the elongated display. A characteristic of the user may also be identified with a sensor, where the characteristic may correspond with a user profile. The elongated display may display an image at a section of the interactive display area near the location of the user, where the image corresponds with a preselected setting of the user profile.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Ian Sage, Cort C. Corwin, Esai Umenei, Josiah Bonewell, David W. Baarman, Richard W. Harris, Andrew Foley
  • Publication number: 20200310550
    Abstract: A system provides an elongated display that has a touchscreen with a multi-user interactive display area that is accessible simultaneously by at least two users. A sensor may monitor users at or near the interactive display area of the touchscreen, such as to transmit a sensor signal that identifies the presence of a user, which may be used to determine a location of the user relative to the elongated display. A characteristic of the user may also be identified with a sensor, where the characteristic may correspond with a user profile. The elongated display may display an image at a section of the interactive display area near the location of the user, where the image corresponds with a preselected setting of the user profile.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Ian Sage, Cort C. Corwin, Esai Umenei, Josiah Bonewell, David W. Baarman, Richard W. Harris, Andrew Foley
  • Patent number: 10530188
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: January 7, 2020
    Assignee: Philips IP Ventures B.V.
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Publication number: 20180226835
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Application
    Filed: January 17, 2018
    Publication date: August 9, 2018
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Patent number: 9912166
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 6, 2018
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Publication number: 20170043189
    Abstract: An acoustic module with a transducer and a solid waveguide. The transducer and waveguide may be curved to focus the acoustic energy along a focal line. The transducer, the top surface of the waveguide and the bottom surface of the waveguide may extend along coaxial curves. The waveguide may include a recess closely receiving the transducer. The waveguide may include an integral skirt that provides a thermal mass. The acoustic module may include a space to accommodate thermal management options. For example, the acoustic module may include a heatsink, an active ventilation system and/or a phase change material. The ultrasound device may include a controller configured to perform a uniformity scan sweep during supply of operating power to the transducer. The uniformity scan sweep can extend through a frequency range that includes the operating point of the acoustic module and does not exceed an acceptable efficiency loss.
    Type: Application
    Filed: August 11, 2016
    Publication date: February 16, 2017
    Inventors: Ronald L. Stoddard, Michael E. Miles, Matthew J. Norconk, Joshua K. Schwannecke, Joseph C. Van Den Brink, Colin J. Moore, A. Esai Umenei, Ryan D. Schamper, Mark S. Bartrum, Benjamin C. Moes, Karlis Vecziedins, Ziqi Wu, Mark C. Smith, Bradley J. Pippel, David S. Vachon
  • Publication number: 20150207333
    Abstract: A remote device in accordance with the present invention includes an adaptive power receiver that receives wireless power from the wireless power supply by induction. The adaptive power receiver may be switched among two or more modes of operation, including, for example, a high-Q mode and a low-Q mode. By controlling the switching between modes, the amount of energy received by the adaptive receiver may be controlled. This control is a form of adaptive resonance control or Q control.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 23, 2015
    Applicant: Access Business Group International LLC
    Inventors: David W. Baarman, Colin J. Moore, Joshua B. Taylor, Matthew J. Norconk, Thomas J. Leppien, Scott A. Mollema, Joshua K. Schwannecke, Benjamin C. Moes, A. Esai Umenei, John James Lord, Robert D. Gruich
  • Patent number: 8620484
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: December 31, 2013
    Assignee: Access Business Group International LLC
    Inventors: David W. Baarman, Joshua K. Schwannecke, Neil W. Kuyvenhoven, A. Esai Umenei, Dale R. Liff, Andrew C. Zeik, Mark A. Blaha, Jason L. Amistadi, Robert D. Gruich
  • Publication number: 20110196544
    Abstract: A system and method of controlling inductive power transfer in an inductive power transfer system and a method for designing an inductive power transfer system with power accounting. The method of controlling inductive power transfer including measuring a characteristic of input power, a characteristic of power in the tank circuit, and receiving information from a secondary device. Estimating power consumption based on the measured characteristic of tank circuit power and received information and comparing the measured characteristic of input power, the information from the secondary device, and the estimated power consumption to determine there is an unacceptable power loss. The method for designing an inductive power transfer system with power accounting including changing the distance between a primary side and a secondary side and changing a load of the secondary side.
    Type: Application
    Filed: February 8, 2011
    Publication date: August 11, 2011
    Applicant: ACCESS BUSINESS GROUP INTERNATIONAL LLC
    Inventors: David W. BAARMAN, Joshua K. SCHWANNECKE, Neil W. KUYVENHOVEN, A. Esai UMENEI, Dale R. LIFF, Andrew C. ZEIK, Mark A. BLAHA, Jason L. AMISTADI, Robert D. GRUICH