Patents by Inventor A-Lien Lin

A-Lien Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11024800
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell. The memory cell includes a bottom electrode overlying a substrate. A data storage structure overlies the bottom electrode. A top electrode overlies the data storage structure. Sidewalls of the top electrode and sidewall of the bottom electrode are aligned. Further, a getter layer abuts the bottom electrode.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: June 1, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hai-Dang Trinh, Chin-Wei Liang, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20210159407
    Abstract: In some embodiments, the present disclosure relates to method of forming an integrated chip. The method includes forming a bottom electrode structure over one or more interconnect layers disposed within one or more stacked inter-level dielectric (ILD) layers over a substrate. The bottom electrode structure has an upper surface having a noble metal. A diffusion barrier film is formed over the bottom electrode structure. A data storage film is formed onto the diffusion barrier film, and a top electrode structure is over the data storage film. The top electrode structure, the data storage film, the diffusion barrier film, and the bottom electrode structure are patterned to define a memory device.
    Type: Application
    Filed: January 6, 2021
    Publication date: May 27, 2021
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20210159404
    Abstract: Some embodiments relate to a method for manufacturing a memory device. The method includes forming a bottom electrode over a substrate. A heat dispersion layer is formed over the bottom electrode. A dielectric layer is formed over the heat dispersion layer. A top electrode is formed over the dielectric layer. The heat dispersion layer comprises a first dielectric material.
    Type: Application
    Filed: February 2, 2021
    Publication date: May 27, 2021
    Inventors: Fa-Shen Jiang, Hsing-Lien Lin
  • Patent number: 11018297
    Abstract: A semiconductor device structure is provided. The structure includes a semiconductor substrate and a lower electrode over the semiconductor substrate. The structure also includes a resistance variable layer over the lower electrode and an ion diffusion barrier layer over the resistance variable layer. The structure further includes a capping layer over the ion diffusion barrier layer, and the capping layer is made of a metal material. In addition, the structure includes an upper electrode over the capping layer. The structure includes a protective element extending along a sidewall of the ion diffusion barrier layer and in direct contact with an interface between the resistance variable layer and the ion diffusion barrier layer.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: May 25, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hai-Dang Trinh, Hsing-Lien Lin, Cheng-Yuan Tsai
  • Publication number: 20210135102
    Abstract: A semiconductor memory structure includes a memory cell, an encapsulation layer over a sidewall of the memory cell, and a nucleation layer between the sidewall of the memory cell and the encapsulation layer. The memory cell includes a top electrode, a bottom electrode and a data-storage element sandwiched between the bottom electrode and the top electrode. The nucleation layer includes metal oxide.
    Type: Application
    Filed: April 9, 2020
    Publication date: May 6, 2021
    Inventors: HSING-LIEN LIN, FU-TING SUNG, CHING JU YANG, CHII-MING WU
  • Publication number: 20210111343
    Abstract: The present disclosure relates to a method of forming a resistive random access memory (RRAM) device. In some embodiments, the method may be performed by forming a first electrode structure over a substrate. A doped data storage element is formed over the first electrode structure. The doped data storage element is formed by forming a first data storage layer over the first electrode structure and forming a second data storage layer over the first data storage layer. The first data storage layer is formed to have a first doping concentration of a dopant and the second data storage layer is formed to have a second doping concentration of the dopant that is less than the first doping concentration. A second electrode structure is formed over the doped data storage element.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 15, 2021
    Inventors: Fa-Shen Jiang, Cheng-Yuan Tsai, Hai-Dang Trinh, Hsing-Lien Lin, Bi-Shen Lee
  • Publication number: 20210091169
    Abstract: Various embodiments of the present application are directed towards a method for forming a metal-insulator-metal (MIM) capacitor comprising an enhanced interfacial layer to reduce breakdown failure. In some embodiments, a bottom electrode layer is deposited over a substrate. A native oxide layer is formed on a top surface of the bottom electrode layer and has a first adhesion strength with the top surface. A plasma treatment process is performed to replace the native oxide layer with an interfacial layer. The interfacial layer is conductive and has a second adhesion strength with the top surface of the bottom electrode layer, and the second adhesion strength is greater than the first adhesion strength. An insulator layer is deposited on the interfacial layer. A top electrode layer is deposited on the insulator layer. The top and bottom electrode layers, the insulator layer, and the interfacial layer are patterned to form a MIM capacitor.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Chia-Shiung Tsai, Chung-Yi Yu, Rei-Lin Chu
  • Publication number: 20210074805
    Abstract: Various embodiments of the present disclosure are directed towards a metal-insulator-metal (MIM) capacitor including a diffusion barrier layer. A bottom electrode overlies a substrate. A capacitor dielectric layer overlies the bottom electrode. A top electrode overlies the capacitor dielectric layer. The top electrode includes a first top electrode layer, a second top electrode layer, and a diffusion barrier layer disposed between the first and second top electrode layers.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 11, 2021
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Hai-Dang Trinh, Fa-Shen Jiang
  • Publication number: 20210066591
    Abstract: Various embodiments of the present disclosure are directed towards a memory cell including a co-doped data storage structure. A bottom electrode overlies a substrate and a top electrode overlies the bottom electrode. The data storage structure is disposed between the top and bottom electrodes. The data storage structure comprises a dielectric material doped with a first dopant and a second dopant.
    Type: Application
    Filed: March 3, 2020
    Publication date: March 4, 2021
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Tzu-Chung Tsai, Fa-Shen Jiang, Bi-Shen Lee
  • Publication number: 20210065730
    Abstract: An electronic system includes an echo canceller, a calculation unit, and a control circuit. The echo canceller includes a plurality of operational segments and is configured to perform echo cancellation in a data mode or a power-saving mode. Based on the power of each operational segment provided by the calculation unit, the control circuit is configured to deactivate each stage whose power is lower than a threshold value when the echo canceller is performing echo cancellation in the power-saving mode.
    Type: Application
    Filed: April 1, 2020
    Publication date: March 4, 2021
    Inventors: Yu-Lien Lin, Ta-Chin Tseng, Ching-Yao Su, Ching-Pei Huang
  • Publication number: 20210053816
    Abstract: The present disclosure provides a structure. The structure comprises a cavity enclosed by a first substrate and a second substrate opposite to the first substrate. Further, the structure includes a feature in the cavity and the feature is protruded from a surface of the first substrate. In addition, the structure includes a dielectric layer over the feature, wherein the dielectric layer includes a first surface in contact with the feature and a second surface opposite to the first surface is positioned toward the cavity.
    Type: Application
    Filed: September 25, 2020
    Publication date: February 25, 2021
    Inventors: Yuan-Chih HSIEH, Hsing-Lien LIN, Jung-Huei PENG, Yi-Chien WU
  • Patent number: 10916697
    Abstract: Some embodiments relate to a memory device. The memory device includes a programmable metallization cell random access memory (PMCRAM) cell. The programmable metallization cell comprises a dielectric layer disposed over a bottom electrode, the dielectric layer contains a central region. A conductive bridge is formable and erasable within the dielectric layer and the conductive bridge is contained within the central region of the dielectric layer. A metal layer is disposed over the dielectric layer. A heat dispersion layer is disposed between the bottom electrode and the dielectric layer.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 9, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fa-Shen Jiang, Hsing-Lien Lin
  • Patent number: 10910560
    Abstract: In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a bottom electrode disposed over one or more interconnect layers and a diffusion barrier layer is arranged over the bottom electrode. A data storage layer is separated from the bottom electrode by the diffusion barrier layer. A top electrode is over the data storage layer.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: February 2, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hai-Dang Trinh, Chii-Ming Wu, Hsing-Lien Lin, Fa-Shen Jiang
  • Publication number: 20200411758
    Abstract: Various embodiments of the present application are directed towards a resistive random-access memory (RRAM) cell including a top-electrode barrier layer configured to block the movement of nitrogen or some other suitable non-metal element from a top electrode of the RRAM cell to an active metal layer of the RRAM cell. Blocking the movement of non-metal element may be prevent formation of an undesired switching layer between the active metal layer and the top electrode. The undesired switching layer would increase parasitic resistance of the RRAM cell, such that top-electrode barrier layer may reduce parasitic resistance by preventing formation of the undesired switching layer.
    Type: Application
    Filed: December 23, 2019
    Publication date: December 31, 2020
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Fa-Shen Jiang
  • Publication number: 20200411756
    Abstract: The present disclosure relates to a memory device. The memory device includes a first electrode over a substrate and a second electrode over the substrate. A data storage structure is disposed between the first electrode and the second electrode. The data storage structure includes one or more metals having non-zero concentrations that change as a distance from the substrate increases.
    Type: Application
    Filed: September 16, 2020
    Publication date: December 31, 2020
    Inventors: Hai-Dang Trinh, Cheng-Yuan Tsai, Hsing-Lien Lin, Wen-Ting Chu
  • Patent number: 10868247
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a semiconductor substrate and a lower electrode over the semiconductor substrate. The semiconductor device structure also includes a first dielectric layer over the lower electrode, a second dielectric layer over the first dielectric layer, and a third dielectric layer over the second dielectric layer. Oxygen ions are bonded more tightly in the second dielectric layer than those in the first dielectric layer, and oxygen ions are bonded more tightly in the second dielectric layer than those in the third dielectric layer.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: December 15, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hai-Dang Trinh, Hsing-Lien Lin, Chii-Ming Wu, Cheng-Yuan Tsai
  • Publication number: 20200388756
    Abstract: A semiconductor device structure is provided. The structure includes a semiconductor substrate and a lower electrode over the semiconductor substrate. The structure also includes a resistance variable layer over the lower electrode and an ion diffusion barrier layer over the resistance variable layer. The structure further includes a capping layer over the ion diffusion barrier layer, and the capping layer is made of a metal material. In addition, the structure includes an upper electrode over the capping layer. The structure includes a protective element extending along a sidewall of the ion diffusion barrier layer and in direct contact with an interface between the resistance variable layer and the ion diffusion barrier layer.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hai-Dang TRINH, Hsing-Lien LIN, Cheng-Yuan TSAI
  • Publication number: 20200373357
    Abstract: Embodiments of forming an image sensor with organic photodiodes are provided. Trenches are formed in the organic photodiodes to increase the PN-junction interfacial area, which improves the quantum efficiency (QE) of the photodiodes. The organic P-type material is applied in liquid form to fill the trenches. A mixture of P-type materials with different work function values and thickness can be used to meet the desired work function value for the photodiodes.
    Type: Application
    Filed: August 14, 2020
    Publication date: November 26, 2020
    Inventors: Chin-Wei Liang, Chia-Shiung Tsai, Cheng-Yuan Tsai, Hsing-Lien Lin
  • Patent number: 10818544
    Abstract: The present disclosure relates to an integrated circuit (IC) comprising an adhesion layer to enhance adhesion of an electrode. In some embodiments, the IC comprises a via dielectric layer, an adhesion layer, and a first electrode. The adhesion layer overlies the via dielectric layer, and the first electrode overlies and directly contacts the adhesion layer. The adhesion layer has a first surface energy at an interface at which the first electrode contacts the adhesion layer, and the first electrode has a second surface energy at the interface. Further, the first surface energy is greater than the second surface energy to promote adhesion. The present disclosure also relates to a method for forming the IC.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: October 27, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsing-Lien Lin, Chii-Ming Wu, Hai-Dang Trinh, Fa-Shen Jiang
  • Patent number: 10818857
    Abstract: The present disclosure provides a photosensitive device. The photosensitive device includes a donor-intermix-acceptor (PIN) structure. The PIN structure includes an organic hole transport layer; an organic electron transport layer; and an intermix layer sandwiched between the hole transport organic material layer and the electron transport organic material layer. The intermix layer includes a mixture of an n-type organic material and a p-type organic material.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: October 27, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chin-Wei Liang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chia-Shiung Tsai