Patents by Inventor A. Paul Alivisatos

A. Paul Alivisatos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8889414
    Abstract: Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: November 18, 2014
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Carolyn A. Larabell, Wolfgang J. Parak, Mark Le Gros, Rosanne Boudreau
  • Publication number: 20140204295
    Abstract: A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Shimon Weiss, Michael C. Schlamp, A. Paul Alivisatos
  • Publication number: 20140179046
    Abstract: A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 26, 2014
    Applicant: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Paul A. Alivisatos
  • Patent number: 8753916
    Abstract: The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: June 17, 2014
    Assignee: The Regents of The University of California
    Inventors: A. Paul Alivisatos, Janke J. Dittmer, Wendy U. Huynh, Delia Milliron
  • Patent number: 8678871
    Abstract: A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: March 25, 2014
    Assignee: The Regents of the University of Califronia
    Inventors: Shimon Weiss, Michael C. Schlamp, A. Paul Alivisatos
  • Patent number: 8648524
    Abstract: A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: February 11, 2014
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Michael C. Schlamp, A. Paul Alivisatos
  • Patent number: 8639449
    Abstract: A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: January 28, 2014
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Paul Alivisatos
  • Patent number: 8608848
    Abstract: Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: December 17, 2013
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Erik C. Scher, Liberato Manna
  • Patent number: 8513624
    Abstract: Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: August 20, 2013
    Assignee: The Regents of the University of California
    Inventors: Charina L. Choi, Kristie J. Koski, Sanjeevi Sivasankar, A. Paul Alivisatos
  • Patent number: 8440906
    Abstract: A photovoltaic device having a first electrode layer, a high resistivity transparent film disposed on the first electrode, a second electrode layer, and an inorganic photoactive layer disposed between the first and second electrode layers, wherein the inorganic photoactive layer is disposed in at least partial electrical contact with the high resistivity transparent film, and in at least partial electrical contact with the second electrode. The photoactive layer has a first inorganic material and a second inorganic material different from the first inorganic material, wherein the first and second inorganic materials exhibit a type II band offset energy profile, and wherein the photoactive layer has a first population of nanostructures of a first inorganic material and a second population of nanostructures of a second inorganic material.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: May 14, 2013
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Ilan Gur, Delia Milliron
  • Patent number: 8435635
    Abstract: A method is disclosed. The method includes obtaining a precursor nanoparticle comprising a base material and a first ligand attached to the base material, and reacting the precursor nanoparticle with a reactant comprising a silicon bond, thereby removing the first ligand.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: May 7, 2013
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Jonathan Owen
  • Patent number: 8404570
    Abstract: Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: March 26, 2013
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Erik C. Scher, Liberato Manna
  • Patent number: 8288153
    Abstract: A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: October 16, 2012
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Paul Alivisatos
  • Patent number: 8288152
    Abstract: A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 16, 2012
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Paul Alivisatos
  • Publication number: 20120211670
    Abstract: Systems and methods of detecting force on the nanoscale are provided. The described invention includes methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.
    Type: Application
    Filed: January 25, 2012
    Publication date: August 23, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Charina L. Choi, Kristie J. Koski, Sanjeevi Sivasankar, A. Paul Alivisatos
  • Publication number: 20120060922
    Abstract: A non-sintered structure. The non-sintered structure includes a first non-sintered nanocrystal layer, and a second non-sintered nanocrystal layer wherein the first layer and the second layer are configured to interact electronically.
    Type: Application
    Filed: March 2, 2009
    Publication date: March 15, 2012
    Applicant: The Regents of the University of California
    Inventors: Cyrus Wadia, Yue Wu, Paul A. Alivisatos
  • Publication number: 20120028451
    Abstract: Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Inventors: A. Paul Alivisatos, Erik C. Scher, Liberato Manna
  • Patent number: 8093494
    Abstract: A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: January 10, 2012
    Assignee: The Regents of the University of California
    Inventors: Ilan Gur, Delia Milliron, A. Paul Alivisatos, Haitao Liu
  • Publication number: 20110312116
    Abstract: A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 22, 2011
    Inventors: Shimon Weiss, Michael C. Schlamp, A. Paul Alivisatos
  • Patent number: 8080405
    Abstract: A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: December 20, 2011
    Assignee: The Regents of the University of California
    Inventors: Shimon Weiss, Marcel Bruchez, Paul Alivisatos