Patents by Inventor Aaron Abbott

Aaron Abbott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240374866
    Abstract: A medical system includes an introducer device having an elongate shaft defining a shaft lumen and a hub secured to a proximal region of the elongate shaft. The hub includes a primary channel extending through the hub and fluidly coupled with the shaft lumen and a secondary channel extending through the hub and fluidly coupled with the shaft lumen. A guide catheter is adapted to be advanced through the secondary channel and into the shaft lumen. A guidewire is adapted to be advanced through the secondary channel and into the shaft lumen. A working catheter is adapted to be advanced through the primary channel and into the shaft lumen when the guide catheter is positioned with a distal end of the guide catheter within the secondary channel, the working catheter including a catheter shaft including a distal region that is adapted to releasably engage the guidewire.
    Type: Application
    Filed: May 7, 2024
    Publication date: November 14, 2024
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Joel T. Eggert, James P. Rohl, Aaron Abbott, Daniel Shuey, James K. Cawthra, JR., Joseph Barrett Fitzgerald
  • Publication number: 20240189105
    Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. In an embodiment, an anchor is movable between a delivery configuration and a deployed configuration, the anchor being in the delivery configuration when disposed within a delivery catheter, the anchor being in the deployed configuration when the anchor is moved beyond a distal end of the delivery catheter. When the anchor is in the delivery configuration it has a first outer dimension and when the anchor is in the deployed configuration it has a second outer dimension, the first outer dimension being smaller than the second outer dimension. The anchor is engageable with a papillary muscle or a heart wall when the anchor is in the deployed configuration and is also coupleable to an artificial chordae tendineae to anchor the artificial chordae tendineae to the papillary muscle or heart wall.
    Type: Application
    Filed: January 11, 2024
    Publication date: June 13, 2024
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Christopher J. Koudela
  • Publication number: 20240180546
    Abstract: A medical device for cutting a suture during a minimally invasive procedure includes an elongate shaft, a handle housing disposed at the proximal end of the elongate shaft, and a cutting blade disposed proximate the distal end of the elongate shaft. A proximal portion of the handle housing includes an actuation mechanism including a lever arm having a first portion disposed outside of the handle housing and extending distally from the proximal portion of the handle housing. Translation of the first portion of the lever arm relative to the handle housing axially translates the cutting blade within the elongate shaft. A medical device system may include a stand configured to support at least one medical device and a medical device securable to the stand.
    Type: Application
    Filed: December 5, 2023
    Publication date: June 6, 2024
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Christopher J. Koudela, Aaron Abbott, Mitchell Nelson, Joel T. Eggert, James K. Cawthra, JR., Sandra L. Weeda
  • Patent number: 11931528
    Abstract: A catheter configured to dynamically compensate for the impact of internal and external forces that act upon the catheter during use is disclosed. The catheter may include sensors configured to measure received forces on control cables that extend within the catheter. A controller, coupled to the sensors, may record received force measurements associated with a working position of a distal end of the catheter. The controller may monitor subsequently received forces to identify force variances that may deflect the distal end of the catheter from its working position and may apply a driving force to one or more of the control cables to minimize the force variances. Monitoring received forces during use and applying compensating drive forces may reduce deflection of the distal end of the catheter, increasing the accuracy and precision of an annuloplasty procedure while minimizing potential damage to cardiac tissue.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: March 19, 2024
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: James P. Rohl, Aaron Abbott, Daniel Shuey, Joel T. Eggert, James K. Cawthra, Jr., Jay E. Daley, Christopher Nguyen
  • Publication number: 20240081998
    Abstract: The present disclosure relates generally to the field of medical devices for treating heart disease. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. A system for delivering a chordae tendineae into a heart may include a delivery catheter. A clamp catheter may be configured to translate through the delivery catheter. A spreader may be disposed on the clamp catheter. A first clamp may be at least partially contained in the spreader in a closed configuration and may be attached to the chordae tendineae. An anchor catheter may be configured to translate through the delivery catheter and may have an anchor attached to the chordae tendineae. A sheath may be extended over the anchor catheter and anchor and may be configured to restrain an arm of the anchor.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 14, 2024
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Daniel Shuey, Joel T. Eggert, James P. Rohl, Aaron Abbott, Christopher J. Koudela, Brian Kennedy, Joseph Walker, Douglas Pennington
  • Patent number: 11903831
    Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. In an embodiment, an anchor is movable between a delivery configuration and a deployed configuration, the anchor being in the delivery configuration when disposed within a delivery catheter, the anchor being in the deployed configuration when the anchor is moved beyond a distal end of the delivery catheter. When the anchor is in the delivery configuration it has a first outer dimension and when the anchor is in the deployed configuration it has a second outer dimension, the first outer dimension being smaller than the second outer dimension. The anchor is engageable with a papillary muscle or a heart wall when the anchor is in the deployed configuration and is also coupleable to an artificial chordae tendineae to anchor the artificial chordae tendineae to the papillary muscle or heart wall.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: February 20, 2024
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Christopher J. Koudela
  • Patent number: 11850152
    Abstract: The present disclosure relates generally to the field of medical devices for treating heart disease. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. A system for delivering a chordae tendineae into a heart may include a delivery catheter. A clamp catheter may be configured to translate through the delivery catheter. A spreader may be disposed on the clamp catheter. A first clamp may be at least partially contained in the spreader in a closed configuration and may be attached to the chordae tendineae. An anchor catheter may be configured to translate through the delivery catheter and may have an anchor attached to the chordae tendineae. A sheath may be extended over the anchor catheter and anchor and may be configured to restrain an arm of the anchor.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: December 26, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Joel T. Eggert, James P. Rohl, Aaron Abbott, Christopher J. Koudela, Brian Kennedy, Joseph Walker, Douglas Pennington
  • Publication number: 20230405275
    Abstract: A steering system for a steerable flexible elongate member such as for delivering a medical device and/or system. The steering system may be configured for two-way or four-way steering. A control knob is rotatable to control steering of the steerable flexible elongate member in a first direction or a second direction within a steering plane. In a four-way steering system, a first control knob steers the steerable flexible elongate member in a first steering plane, and a second control knob steers the steerable flexible elongate member in a second steering plane transverse to the first steering plane. The steering system may be supported on a stand configured to allow rotational support of the steering system. The stand may support two steering systems in a manner allowing relative axial translation therebetween.
    Type: Application
    Filed: June 19, 2023
    Publication date: December 21, 2023
    Applicants: BOSTON SCIENTIFIC SCIMED, INC., Mayo Foundation for Medical Education and Research
    Inventors: Mitchell Nelson, Aaron Abbott, Joel T. Eggert
  • Publication number: 20230338144
    Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. A system for adjusting tension in an artificial chordae tendineae includes an artificial chordae tendineae coupleable between a clip and an anchor. The clip is engageable with a leaflet of a heart valve while the anchor is engageable with a papillary muscle or heart wall. The anchor includes a body portion, and a locking portion coupleable with the artificial chordae tendineae and configured to allow movement of the artificial chordae tendineae in a first direction while preventing movement of the artificial chordae tendineae in a second direction opposite the first direction. An actuator is coupled to the locking portion for selectively releasing the locking portion to enable selective movement of the artificial chordae tendineae in the second direction.
    Type: Application
    Filed: June 30, 2023
    Publication date: October 26, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Chrstopher J. Koudela
  • Patent number: 11737875
    Abstract: The present disclosure relates generally to the field of medical devices for delivering artificial chordae tendineae in a patient. A system for adjusting tension in an artificial chordae tendineae includes an artificial chordae tendineae coupleable between a clip and an anchor. The clip is engageable with a leaflet of a heart valve while the anchor is engageable with a papillary muscle or heart wall. The anchor includes a body portion, and a locking portion coupleable with the artificial chordae tendineae and configured to allow movement of the artificial chordae tendineae in a first direction while preventing movement of the artificial chordae tendineae in a second direction opposite the first direction. An actuator is coupled to the locking portion for selectively releasing the locking portion to enable selective movement of the artificial chordae tendineae in the second direction.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: August 29, 2023
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Joel T. Eggert, Aaron Abbott, James P. Rohl, Christopher J. Koudela
  • Publication number: 20230233324
    Abstract: The present disclosure relates generally to the field of medical devices for clamping a leaflet of a heart valve. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. In an embodiment, a system may include a clamp having a plurality of arms at a first end. The plurality of arms may have a closed configuration in which the arms are oriented toward each other, and an open configuration in which the arms are oriented away from each other. A spring portion may be coupled to the plurality of arms at a second end that is configured to bias the arms to the closed configuration. The arms of the clamp may be configured to fixedly engage with a leaflet of the heart valve. The second end of the clamp may be configured to couple to an artificial chordae tendineae.
    Type: Application
    Filed: April 5, 2023
    Publication date: July 27, 2023
    Applicant: Boston Scientific Scimed, Inc.
    Inventors: Joel T. Eggert, Aaron Abbott, Daniel Shuey, James P. Rohl
  • Patent number: 11648117
    Abstract: The present disclosure relates generally to the field of medical devices for clamping a leaflet of a heart valve. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. In an embodiment, a system may include a clamp having a plurality of arms at a first end. The plurality of arms may have a closed configuration in which the arms are oriented toward each other, and an open configuration in which the arms are oriented away from each other. A spring portion may be coupled to the plurality of arms at a second end that is configured to bias the arms to the closed configuration. The arms of the clamp may be configured to fixedly engage with a leaflet of the heart valve. The second end of the clamp may be configured to couple to an artificial chordae tendineae.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: May 16, 2023
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Joel T. Eggert, Aaron Abbott, Daniel Shuey, James P. Rohl
  • Publication number: 20230123832
    Abstract: A clip and a clip deployment and delivery system. The clip may be engaged with a clip spreader such that simple relative movement, such as sliding movement, between the clip and clip spreader causes the clip and clip spreader to disengage from each other. A clip spreader actuator may be coupled to one arm of the clip spreader, extend distally around a distal end of the clip spreader, proximally along the other clip spreader arm, and to a proximal end at which the actuator may be controlled to open or close the clip spreader. The clips may be leaflet clips having teeth on one arm thereof and bumps on another arm thereof. The arms of the leaflet clip may be biased into a closed configuration by a flex zone which has an expanded portion extending laterally away from only one of the clip arms.
    Type: Application
    Filed: August 30, 2022
    Publication date: April 20, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Aaron Abbott, Joseph Walker, Joel T. Eggert, Daniel Shuey, Christopher J. Koudela, Troy A. Giese, Larry M. Killeen, James P. Rohl, Mitchell Nelson
  • Publication number: 20230102138
    Abstract: A medical device for cutting a suture during a minimally invasive procedure may include an elongate shaft having a proximal end, a distal end, and a central longitudinal axis, a handle disposed at the proximal end of the elongate shaft, the handle including an actuation mechanism, and a cutting blade disposed proximate the distal end of the elongate shaft. The cutting blade is axially translatable within the elongate shaft in response to operation of the actuation mechanism. The elongate shaft includes a distal port to receive a suture. The elongate shaft includes a transverse slot extending inward from an outer surface of the elongate shaft generally perpendicular to the central longitudinal axis. The elongate shaft includes a suture lumen extending from the distal port axially within the elongate shaft to the transverse slot. The cutting blade intersects the transverse slot adjacent the suture lumen.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 30, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Daniel Shuey, Christopher J. Koudela, Aaron Abbott, Mitchell Nelson, Joel T. Eggert, James K. Cawthra, JR., Sandra L. Weeda
  • Publication number: 20230062599
    Abstract: A tissue anchor and an anchor delivery and deployment system. The tissue anchor is shiftable between a delivery configuration when housed in anchor garage of the anchor delivery and deployment system, and a deployment configuration when deployed outside the anchor garage. The anchor has a plurality of talons which may be formed from a laser cut tube. The talons may taper, such as widthwise.
    Type: Application
    Filed: August 30, 2022
    Publication date: March 2, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Joseph Walker, Troy A. Giese, Christopher J. Koudela, Daniel Shuey, Aaron Abbott, Joel T. Eggert, Larry M. Killeen, James P. Rohl, Mitchell Nelson
  • Publication number: 20220369906
    Abstract: Imaging devices, imaging systems, and methods are presented for determining distances, depths, and sizes of a viewed tissue or object through a visualization device. The device may include an elongated shaft and an imaging component. The imaging component may extend through the elongated shaft. The imaging component may have a lens and may be configured to capture an image of an area exterior of the elongated shaft in a field of view of the lens. A transparent cover may extend over the lens. The transparent cover may be configured to cause one or more identifiers to appear in the image. The imaging device may include or be used with a computing device to analyze image data of captured images.
    Type: Application
    Filed: May 19, 2022
    Publication date: November 24, 2022
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: CRAIG MICHAEL WILSON, LANCE ADAM FREESEMAN, JAMES P. ROHL, AARON ABBOTT, JOEL T. EGGERT, JAMES A. KLOS, SANDRA L. WEEDA, NIRAJ PRASAD RAUNIYAR
  • Publication number: 20220096235
    Abstract: Devices, systems, and method for adjusting and setting tension of an artificial chordae tendineae. The artificial chordae tendineae is coupleable between a leaflet clip and a tissue anchor. A locking assembly, through which the artificial chordae tendineae extends, is shiftable between a tension-adjusting configuration, in which the artificial chordae tendineae is movable to adjust tension on the leaflet, and a tension-setting or locked configuration, in which the artificial chordae tendineae is inhibited or prevented or locked against moving with respect to the locking assembly to set or fix tension on the leaflet.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 31, 2022
    Inventors: Troy A. Giese, Christopher J. Koudela, James P. Rohl, Daniel Shuey, Larry M. Killeen, Joel T. Eggert, Aaron Abbott
  • Publication number: 20210169651
    Abstract: A valve fixation device may comprise a unitary elongate member that is biased towards a closed configuration wherein at least a pair of tissue engaging surfaces of the elongate member are held adjacent to each other by a bias force. The bias force is at least equal to a valve leaflet grasping force, enabling the fixation device to grasp and retain leaflets as part of cardiac treatment. A delivery tool including a spreader may independently translate the tissue engaging surfaces to enable cardiac leaflets to be captured and retained by and/or between the tissue engaging surfaces. The valve fixation device may include at least two arms, each of which may be independently controlled to grasp and capture opposing leaflets of a valve, such as the anterior and posterior leaflets of a mitral valve, to reduce the size of the valve opening and improve cardiac performance.
    Type: Application
    Filed: December 8, 2020
    Publication date: June 10, 2021
    Inventors: Joel T. Eggert, Aaron Abbott, James P. Rohl, Daniel Shuey
  • Patent number: 11020228
    Abstract: Anchor delivery systems and methods for repairing a valve inside a body, such as a heart valve, may include a delivery catheter having a distal end comprised of two or more rotatably coupled knuckles. An anchor delivery mechanism is disposed distally of the two or more knuckles, and includes a first pincer arm having a distal end and a proximal end rotatably coupled to a distal end of the anchor delivery mechanism at a first connection point, and a second pincer arm having a distal end and a proximal end rotatably coupled to the distal end of the anchor delivery mechanism at a second connection point opposite the first connection point. In a closed position, the distal ends of the first and second pincer arms are positioned together. In an open position, the distal ends of the first and second pincer arms are rotated apart from each other.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: June 1, 2021
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: James P. Rohl, Joel T. Eggert, Katherine L. Baldwin, Craig M. Wilson, Lance A. Freeseman, James K. Cawthra, Jr., Dennis B. Werner, Daniel Shuey, Jonathan P. Fettig, Todd College, Gurpreet S. Sandhu, Joseph A. Dearani, Aaron Abbott
  • Publication number: 20210007847
    Abstract: The present disclosure relates generally to the field of medical devices for clamping a leaflet of a heart valve. In particular, the present disclosure relates to medical devices, systems, and methods for delivering artificial chordae tendineae in a patient. In an embodiment, a system may include a clamp having a plurality of arms at a first end. The plurality of arms may have a closed configuration in which the arms are oriented toward each other, and an open configuration in which the arms are oriented away from each other. A spring portion may be coupled to the plurality of arms at a second end that is configured to bias the arms to the closed configuration. The arms of the clamp may be configured to fixedly engage with a leaflet of the heart valve. The second end of the clamp may be configured to couple to an artificial chordae tendineae.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 14, 2021
    Inventors: Joel T. Eggert, Aaron Abbott, Daniel Shuey, James P. Rohl