Patents by Inventor Aaron Burns

Aaron Burns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118509
    Abstract: A fiber optic cable includes a cable core of core elements and a protective sheath surrounding the core elements, an armor surrounding the cable core, the armor comprising a single overlap portion when the fiber optic cable is viewed in cross-section, and a jacket surrounding the armor, the jacket having at least two longitudinal discontinuities extruded therein. A method of accessing the cable core without the use of ripcords includes removing a portion of the armor in an access section by pulling the armor away from the cable core so that an overlap portion separates around the cable core as it is being pulled past the cable core. A protective sheath protects the core elements as the armor is being pulled around the cable core.
    Type: Application
    Filed: December 18, 2023
    Publication date: April 11, 2024
    Inventors: Bradley Jerome Blazer, Rodney Maurice Burns, James Garrett Dewell, Julian Latelle Greenwood, III, Keith Aaron Greer, Warren Welborn McAlpine
  • Publication number: 20230295178
    Abstract: Substituted furanopyrimidine chemical entities of Formula (I): wherein Ra has any of the values described herein, and compositions comprising such chemical entities; methods of making them; and their use in a wide range of methods, including metabolic and reaction kinetic studies; detection and imaging techniques; radioactive therapies; modulating and treating disorders mediated by PDE1 activity or dopaminergic signaling; treating neurological disorders, CNS disorders, dementia, neurodegenerative diseases, and trauma-dependent losses of function; treating stroke, including cognitive and motor deficits during stroke rehabilitation; facilitating neuroprotection and neurorecovery; enhancing the efficiency of cognitive and motor training, including animal skill training protocols; and treating peripheral disorders, including cardiovascular, renal, hematological, gastroenterological, liver, cancer, fertility, and metabolic disorders.
    Type: Application
    Filed: September 2, 2022
    Publication date: September 21, 2023
    Inventors: Brett Bookser, Iriny Botrous, Aaron Burns, DeMichael Chung, Brian Dyck, Andrew Kleinke, Dange Vijay Kumar, Margaret McCarrick, Nicholas Raffaele, Joe Tran, Michael Weinhouse
  • Patent number: 11434247
    Abstract: Substituted furanopyrimidine chemical entities of Formula (I): wherein Ra has any of the values described herein, and compositions comprising such chemical entities; methods of making them; and their use in a wide range of methods, including metabolic and reaction kinetic studies; detection and imaging techniques; radioactive therapies; modulating and treating disorders mediated by PDE1 activity or dopaminergic signaling; treating neurological disorders, CNS disorders, dementia, neurodegenerative diseases, and trauma-dependent losses of function; treating stroke, including cognitive and motor deficits during stroke rehabilitation; facilitating neuroprotection and neurorecovery; enhancing the efficiency of cognitive and motor training, including animal skill training protocols; and treating peripheral disorders, including cardiovascular, renal, hematological, gastroenterological, liver, cancer, fertility, and metabolic disorders.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: September 6, 2022
    Assignee: Dart Neuroscience LLC
    Inventors: Brett Bookser, Iriny Botrous, Aaron Burns, DeMichael Chung, Brian Dyck, Andrew Kleinke, Dange Vijay Kumar, Margaret McCarrick, Nicholas Raffaele, Joe Tran, Michael Weinhouse
  • Patent number: 10955914
    Abstract: A head mounted display (HMD) device operating in a real world physical environment is configured with a sensor package that enables determination of an intersection of a device user's projected gaze with a location in a virtual reality environment so that virtual objects can be placed into the environment with high precision. Surface reconstruction of the physical environment can be applied using data from the sensor package to determine the user's view position in the virtual world. A gaze ray originating from the view position is projected outward and a cursor or similar indicator is rendered on the HMD display at the ray's closest intersection with the virtual world such as a virtual object, floor/ground, etc. In response to user input, such as a gesture, voice interaction, or control manipulation, a virtual object is placed at the point of intersection between the projected gaze ray and the virtual reality environment.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: March 23, 2021
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Aaron Burns, Ben Sugden, Laura Massey, Tom Salter
  • Patent number: 10649212
    Abstract: An HMD device is configured to vertically adjust the ground plane of a rendered virtual reality environment that has varying elevations to match the flat real world floor so that the device user can move around to navigate and explore the environment and always be properly located on the virtual ground and not be above it or underneath it. Rather than continuously adjust the virtual reality ground plane, which can introduce cognitive dissonance discomfort to the user, when the user is not engaged in some form of locomotion (e.g., walking), the HMD device establishes a threshold radius around the user within which virtual ground plane adjustment is not performed. The user can make movements within the threshold radius without the HMD device shifting the virtual terrain. When the user moves past the threshold radius, the device will perform an adjustment as needed to match the ground plane of the virtual reality environment to the real world floor.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: May 12, 2020
    Assignee: Microsoft Technology Licensing LLC
    Inventors: Aaron Burns, Ben Sugden, Laura Massey, Alexandre Da Veiga, Tom Salter, Greg Alt
  • Publication number: 20190286231
    Abstract: A head mounted display (HMD) device operating in a real world physical environment is configured with a sensor package that enables determination of an intersection of a device user's projected gaze with a location in a virtual reality environment so that virtual objects can be placed into the environment with high precision. Surface reconstruction of the physical environment can be applied using data from the sensor package to determine the user's view position in the virtual world. A gaze ray originating from the view position is projected outward and a cursor or similar indicator is rendered on the HMD display at the ray's closest intersection with the virtual world such as a virtual object, floor/ground, etc. In response to user input, such as a gesture, voice interaction, or control manipulation, a virtual object is placed at the point of intersection between the projected gaze ray and the virtual reality environment.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Inventors: Aaron BURNS, Ben SUGDEN, Laura MASSEY, Tom SALTER
  • Patent number: 10416760
    Abstract: A head mounted display (HMD) device operating in a real world physical environment is configured with a sensor package that enables determination of an intersection of a device user's projected gaze with a location in a virtual reality environment so that virtual objects can be placed into the environment with high precision. Surface reconstruction of the physical environment can be applied using data from the sensor package to determine the user's view position in the virtual world. A gaze ray originating from the view position is projected outward and a cursor or similar indicator is rendered on the HMD display at the ray's closest intersection with the virtual world such as a virtual object, floor/ground, etc. In response to user input, such as a gesture, voice interaction, or control manipulation, a virtual object is placed at the point of intersection between the projected gaze ray and the virtual reality environment.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: September 17, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Aaron Burns, Ben Sugden, Laura Massey, Tom Salter
  • Patent number: 10338676
    Abstract: A head mounted display (HMD) device operating in a real world physical environment is configured with a sensor package that enables determination of an intersection of a device user's projected gaze with a location in a virtual reality environment so that virtual objects can be placed into the environment with high precision. Surface reconstruction of the physical environment can be applied using data from the sensor package to determine the user's view position in the virtual world. A gaze ray originating from the view position is projected outward and a cursor or similar indicator is rendered on the HMD display at the ray's closest intersection with the virtual world such as a virtual object, floor/ground, etc. In response to user input, such as a gesture, voice interaction, or control manipulation, a virtual object is placed at the point of intersection between the projected gaze ray and the virtual reality environment.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: July 2, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Aaron Burns, Ben Sugden, Laura Massey, Tom Salter
  • Patent number: 10209785
    Abstract: Modifying a tether linked to a cursor based on depth volatility of the cursor is disclosed. Multiple displays show a three-dimensional image that seems to be at the same real world location regardless of the location of the display. One person operates a cursor in the three-dimensional image. Volatility of depth of the cursor from the viewpoint of the cursor operator is tracked. The appearance of the tether is changed in other displays in response to the depth volatility. The tether may include a line from the cursor towards the cursor operator. The tether is not necessarily displayed all of the time so as to not obscure the view of the three-dimensional image. When there is not any depth volatility for some time, the tether is not displayed. In response to high depth volatility, the tether may be displayed as a long line from the cursor.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: February 19, 2019
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Aaron Burns
  • Patent number: 9910513
    Abstract: Technology for stabilizing an interaction ray based on variance in head rotation is disclosed. One aspect includes monitoring orientation of a person's head, which may include monitoring rotation about an axis of the head, such as recording an Euler angle with respect to rotation about an axis of the head. The logic determines a three-dimensional (3D) ray based on the orientation of the head. The 3D ray has a motion that precisely tracks the Euler angle over time. The logic generates an interaction ray that tracks the 3D ray to some extent. The logic determines a variance of the Euler angle over time. The logic stabilizes the interaction ray based on the variance of the Euler angle over time despite some rotation about the axis of the head. The amount of stabilizing may be inversely proportional to the variance of the Euler angle.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: March 6, 2018
    Assignee: Microsoft Technologies Licensing, LLC
    Inventor: Aaron Burns
  • Patent number: 9904055
    Abstract: An HMD device is configured to check the placement of newly introduced objects in a virtual reality environment such as interactive elements like menus, widgets, and notifications to confirm that the objects are significantly present within the user's field of view. If the intended original placement would locate the object outside the field of view, the HMD device relocates the object so that a portion of the object is viewable at the edge of the HMD display closest to its original placement. Such smart placement of virtual objects enables the user to readily discover new objects when they are introduced into the virtual reality environment, and then interact with the objects within a range of motions and/or head positions that is comfortable to support a more optimal interaction and user experience.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: February 27, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Aaron Burns, Ben Sugden, Tom Salter
  • Patent number: 9865089
    Abstract: An HMD device renders a virtual reality environment in which areas of the real world are masked out so that real world objects such as computer monitors, doors, people, faces, and the like appear visible to the device user and no holographic or virtual reality content is rendered over the visible objects. The HMD device includes a sensor package to support application of surface reconstruction techniques to dynamically detect edges and surfaces of the real world objects and keep objects visible on the display as the user changes position or head pose or when the real world objects move or their positions are changed. The HMD device can expose controls to enable the user to select which real world objects are visible in the virtual reality environment.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: January 9, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Aaron Burns, Tom Salter, Ben Sugden, Jeff Sutherland
  • Publication number: 20180003982
    Abstract: An HMD device is configured to vertically adjust the ground plane of a rendered virtual reality environment that has varying elevations to match the flat real world floor so that the device user can move around to navigate and explore the environment and always be properly located on the virtual ground and not be above it or underneath it. Rather than continuously adjust the virtual reality ground plane, which can introduce cognitive dissonance discomfort to the user, when the user is not engaged in some form of locomotion (e.g., walking), the HMD device establishes a threshold radius around the user within which virtual ground plane adjustment is not performed. The user can make movements within the threshold radius without the HMD device shifting the virtual terrain. When the user moves past the threshold radius, the device will perform an adjustment as needed to match the ground plane of the virtual reality environment to the real world floor.
    Type: Application
    Filed: August 17, 2017
    Publication date: January 4, 2018
    Inventors: Aaron Burns, Ben Sugden, Laura Massey, Alexandre Da Veiga, Tom Salter, Greg Alt
  • Patent number: 9766460
    Abstract: An HMD device is configured to vertically adjust the ground plane of a rendered virtual reality environment that has varying elevations to match the flat real world floor so that the device user can move around to navigate and explore the environment and always be properly located on the virtual ground and not be above it or underneath it. Rather than continuously adjust the virtual reality ground plane, which can introduce cognitive dissonance discomfort to the user, when the user is not engaged in some form of locomotion (e.g., walking), the HMD device establishes a threshold radius around the user within which virtual ground plane adjustment is not performed. The user can make movements within the threshold radius without the HMD device shifting the virtual terrain. When the user moves past the threshold radius, the device will perform an adjustment as needed to match the ground plane of the virtual reality environment to the real world floor.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: September 19, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Aaron Burns, Ben Sugden, Laura Massey, Alexandre Da Veiga, Tom Salter, Greg Alt
  • Publication number: 20170220134
    Abstract: Modifying a tether linked to a cursor based on depth volatility of the cursor is disclosed. Multiple displays show a three-dimensional image that seems to be at the same real world location regardless of the location of the display. One person operates a cursor in the three-dimensional image. Volatility of depth of the cursor from the viewpoint of the cursor operator is tracked. The appearance of the tether is changed in other displays in response to the depth volatility. The tether may include a line from the cursor towards the cursor operator. The tether is not necessarily displayed all of the time so as to not obscure the view of the three-dimensional image. When there is not any depth volatility for some time, the tether is not displayed. In response to high depth volatility, the tether may be displayed as a long line from the cursor.
    Type: Application
    Filed: February 2, 2016
    Publication date: August 3, 2017
    Inventor: Aaron Burns
  • Publication number: 20170212608
    Abstract: Technology for stabilizing an interaction ray based on variance in head rotation is disclosed. One aspect includes monitoring orientation of a person's head, which may include monitoring rotation about an axis of the head, such as recording an Euler angle with respect to rotation about an axis of the head. The logic determines a three-dimensional (3D) ray based on the orientation of the head. The 3D ray has a motion that precisely tracks the Euler angle over time. The logic generates an interaction ray that tracks the 3D ray to some extent. The logic determines a variance of the Euler angle over time. The logic stabilizes the interaction ray based on the variance of the Euler angle over time despite some rotation about the axis of the head. The amount of stabilizing may be inversely proportional to the variance of the Euler angle.
    Type: Application
    Filed: February 21, 2017
    Publication date: July 27, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventor: Aaron Burns
  • Patent number: 9710130
    Abstract: A user input for a near-eye, see-through display device is disclosed. Hands-free user input in an augmented reality environment is provided for. A user can provide input by moving the orientation of their head. For example, the user could rotate their head. In one aspect, a user can provide input by moving their eye gaze along a direction. In one aspect, when the user directs their attention at a user interface symbol, a handle extends away from the user interface symbol. The handle may serve as a type of selection device such that if the user directs their attention along the handle, away from the user interface symbol, a selection can be made. “As one example, the selection causes a spoke menu to appear which the user can select by rotating their head such that the system determines the user is looking along the spoke away from a central hub.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: July 18, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Kathleen Mulcahy, Aaron Burns, Todd Omotani, Felicia Williams, Jeff Cole, Tim Psiaki
  • Patent number: 9606364
    Abstract: Technology for stabilizing an interaction ray based on variance in head rotation is disclosed. One aspect includes monitoring orientation of a person's head, which may include monitoring rotation about an axis of the head, such as recording an Euler angle with respect to rotation about an axis of the head. The logic determines a three-dimensional (3D) ray based on the orientation of the head. The 3D ray has a motion that precisely tracks the Euler angle over time. The logic generates an interaction ray that tracks the 3D ray to some extent. The logic determines a variance of the Euler angle over time. The logic stabilizes the interaction ray based on the variance of the Euler angle over time despite some rotation about the axis of the head. The amount of stabilizing may be inversely proportional to the variance of the Euler angle.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: March 28, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Aaron Burns
  • Publication number: 20160077344
    Abstract: Technology for stabilizing an interaction ray based on variance in head rotation is disclosed. One aspect includes monitoring orientation of a person's head, which may include monitoring rotation about an axis of the head, such as recording an Euler angle with respect to rotation about an axis of the head. The logic determines a three-dimensional (3D) ray based on the orientation of the head. The 3D ray has a motion that precisely tracks the Euler angle over time. The logic generates an interaction ray that tracks the 3D ray to some extent. The logic determines a variance of the Euler angle over time. The logic stabilizes the interaction ray based on the variance of the Euler angle over time despite some rotation about the axis of the head. The amount of stabilizing may be inversely proportional to the variance of the Euler angle.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 17, 2016
    Inventor: Aaron Burns
  • Publication number: 20160026242
    Abstract: A head mounted display (HMD) device operating in a real world physical environment is configured with a sensor package that enables determination of an intersection of a device user's projected gaze with a location in a virtual reality environment so that virtual objects can be placed into the environment with high precision. Surface reconstruction of the physical environment can be applied using data from the sensor package to determine the user's view position in the virtual world. A gaze ray originating from the view position is projected outward and a cursor or similar indicator is rendered on the HMD display at the ray's closest intersection with the virtual world such as a virtual object, floor/ground, etc. In response to user input, such as a gesture, voice interaction, or control manipulation, a virtual object is placed at the point of intersection between the projected gaze ray and the virtual reality environment.
    Type: Application
    Filed: April 27, 2015
    Publication date: January 28, 2016
    Inventors: Aaron Burns, Ben Sugden, Laura Massey, Tom Salter