Patents by Inventor Aaron C. McGinnis

Aaron C. McGinnis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12202917
    Abstract: This disclosure relates to processes for producing polyolefins in a gas phase reactor using condensing agent(s) (CAs), and real-time calculation of the ratio of one type of CA to another CA within a CA composition. This disclosure provides methods for controlling condensed phase cooling in a gas phase reactor used to polymerize olefins. The polymerization may employ one or more polymerization catalysts to polymerize one or more olefin monomers, and may include introducing a first condensing agent and a second condensing agent in a ratio of first condensing agent to second condensing agent, which ratio is calculated by ascertaining a stick limit for a first condensing agent, calculating an equivalence factor relating the first condensing agent and a second condensing agent, ascertaining a total allowable condensing agent, and calculating a first amount of the first condensing agent removed and replaced by a second amount of the second condensing agent.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: January 21, 2025
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bruce J. Savatsky, Brian R. Greenhalgh, Joseph A. Moebus, Aaron C. McGinnis, Ryan W. Impelman, Anne A. Bernard-Brunel
  • Patent number: 12152095
    Abstract: The present disclosure relates to processes for production of polyolefins from olefin monomer(s) in a gas phase reactor using condensing agent(s) (CAs), and in particular relates to controlling condensed phase cooling in a gas phase reactor used to polymerize olefin monomer(s). The method may include introducing first and second condensing agent(s) into the reactor at ratio(s) determined by ascertaining a stick limit for the first condensing agent, calculating an equivalence factor relating the first and second condensing agents, ascertaining total allowable condensing agent, and calculating amount of the first condensing agent removed and replaced by the second condensing agent. The method may further include calculating the dew point limit of a gas phase composition including olefin monomer(s) as well as the first and second condensing agents; and determining if introducing a mixture comprising the olefin monomer(s) and the condensing agent composition would exceed the calculated dew point limit.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: November 26, 2024
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Bruce J. Savatsky, Brian R. Greenhalgh, Joseph A. Moebus, Aaron C. McGinnis, Ryan W. Impelman, Anne A. Bernard-Brunel
  • Patent number: 11492422
    Abstract: A process for producing an olefin polymer employs a gas phase polymerization reactor having a product discharge system comprising first and second pairs of lock hoppers, wherein each pair comprises an upstream lock hopper connected by valve means to the reactor and a downstream lock hopper connected by valve means to the upstream lock hopper and by further valve means to a product recovery system, and wherein a first cross-tie is provided between the upstream lock hoppers of the first and second pairs of lock hoppers and a second cross-tie is provided between the downstream lock hoppers of the first and second pairs of lock hoppers. Operation of the second cross-tie during product removal cycles is controlled in accordance with reactor pressure.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: November 8, 2022
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Michael D. Lucas, Handel D. Bennett, David T. Lakin, Aaron C. McGinnis, Benjamin J. Ohran, David J. Sandell
  • Publication number: 20210079126
    Abstract: A process for producing an olefin polymer employs a gas phase polymerization reactor having a product discharge system comprising first and second pairs of lock hoppers, wherein each pair comprises an upstream lock hopper connected by valve means to the reactor and a downstream lock hopper connected by valve means to the upstream lock hopper and by further valve means to a product recovery system, and wherein a first cross-tie is provided between the upstream lock hoppers of the first and second pairs of lock hoppers and a second cross-tie is provided between the downstream lock hoppers of the first and second pairs of lock hoppers. Operation of the second cross-tie during product removal cycles is controlled in accordance with reactor pressure.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 18, 2021
    Inventors: Michael D. Lucas, Handel D. Bennett, David T. Lakin, Aaron C. McGinnis, Benjamin J. Ohran, David J. Sandell