Patents by Inventor Aaron Dangerfield
Aaron Dangerfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12281382Abstract: Methods of selectively depositing blocking layers on conductive surfaces over dielectric surfaces are described. In some embodiments, a 4-8 membered substituted heterocycle is exposed to a substrate to selectively form a blocking layer. In some embodiments, a layer is selectively deposited on the dielectric surface after the blocking layer is formed. In some embodiments, the blocking layer is removed.Type: GrantFiled: May 24, 2023Date of Patent: April 22, 2025Assignee: Applied Materials, Inc.Inventors: Lakmal C. Kalutarage, Bhaskar Jyoti Bhuyan, Aaron Dangerfield, Feng Q. Liu, Mark Saly, Michael Haverty, Muthukumar Kaliappan
-
Patent number: 12261049Abstract: Described herein is a method for selectively cleaning and/or etching a sample. The method includes selectively forming a film in a trench of a substrate such that the trench may be selectively etched. A polymer film is deposited on the bottom surface of the trench without being deposited on the side wall. A second film is selectively formed in the trench without forming the second film on the polymer film. The polymer is then removed from the bottom surface of the trench and then etching is performed on the bottom surface of the trench using an etch chemistry, wherein the second film protects the side wall from being etched.Type: GrantFiled: June 9, 2022Date of Patent: March 25, 2025Assignee: Applied Materials , Inc.Inventors: David Thompson, Bhaskar Jyoti Bhuyan, Mark Saly, Lisa Enman, Aaron Dangerfield, Jesus Candelario Mendoza, Jeffrey W. Anthis, Lakmal Kalutarage
-
Publication number: 20240355675Abstract: Methods of forming semiconductor devices by enhancing selective deposition are described. In some embodiments, a blocking layer is deposited on a metal surface before deposition of a barrier layer. The methods include exposing a substrate with a metal surface, a dielectric surface and an aluminum oxide surface or an aluminum nitride surface to a blocking molecule, such as a boron-containing compound, to form the blocking layer selectively on the metal surface over the dielectric surface and one of the aluminum oxide surface or the aluminum nitride surface.Type: ApplicationFiled: April 9, 2024Publication date: October 24, 2024Applicant: Applied Materials, Inc.Inventors: Muthukumar Kaliappan, Yong Jin Kim, Carmen Leal Cervantes, Bhaskar Jyoti Bhuyan, Xiangjin Xie, Michael Haverty, Kevin Kashefi, Mark Saly, Aaron Dangerfield, Jesus Candelario Mendoza-Gutierrez
-
Publication number: 20240339358Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. The methods include selectively depositing a self-assembled monolayer (SAM) on the bottom of the gap. The SAM has a general formula I to XIX, wherein R, R?, R1, R2, R3, R4, and R5 are independently selected from hydrogen (H), alkyl, alkene, alkyne, and aryl, n is from 1 to 20, m is from 1 to 20, x is from 1 to 2, and y is from 1 to 2. A barrier layer is formed on the SAM before selectively depositing a metal liner on the barrier layer. The SAM is removed after selectively depositing the metal liner on the barrier layer.Type: ApplicationFiled: April 7, 2023Publication date: October 10, 2024Applicant: Applied Materials, Inc.Inventors: Jesus Candelario Mendoza-Gutierrez, Aaron Dangerfield, Bhaskar Jyoti Bhuyan, Mark Saly, Yang Zhou, Yong Jin Kim, Carmen Leal Cervantes, Ge Qu, Zhiyuan Wu, Feng Chen, Kevin Kashefi
-
Patent number: 12094766Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups selected from alkene, alkyne, ketone, hydroxyl, aldehyde, or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.Type: GrantFiled: October 21, 2022Date of Patent: September 17, 2024Assignee: Applied Materials, Inc.Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
-
Patent number: 12084764Abstract: Embodiments disclosed herein include methods of depositing a metal oxo photoresist using dry deposition processes. In an embodiment, the method for forming a photoresist layer over a substrate in a vacuum chamber comprises providing a metal precursor vapor into the vacuum chamber. In an embodiment, the method further comprises providing an oxidant vapor into the vacuum chamber, where a reaction between the metal precursor vapor and the oxidant vapor results in the formation of the photoresist layer on a surface of the substrate. In an embodiment, the photoresist layer is a metal oxo containing material.Type: GrantFiled: June 17, 2021Date of Patent: September 10, 2024Assignee: Applied Materials, Inc.Inventors: Lakmal Charidu Kalutarage, Aaron Dangerfield, Mark Joseph Saly, David Michael Thompson, Susmit Singha Roy, Regina Freed
-
Publication number: 20240297073Abstract: Methods of forming semiconductor devices by enhancing selective deposition are described. In some embodiments, a blocking layer is deposited on a metal surface before deposition of a barrier layer. The methods include exposing a substrate with a metal surface, a dielectric surface and an aluminum oxide surface or an aluminum nitride surface to a blocking molecule to form the blocking layer selectively on the metal surface over the dielectric surface and one of the aluminum oxide surface or the aluminum nitride surface.Type: ApplicationFiled: March 3, 2023Publication date: September 5, 2024Applicant: Applied Materials, Inc.Inventors: Muthukumar Kaliappan, Bhaskar Jyoti Bhuyan, Yong Jin Kim, Carmen Leal Cervantes, Xiangjin Xie, Jesus Candelario Mendoza-Gutierrez, Aaron Dangerfield, Michael Haverty, Mark Saly, Kevin Kashefi
-
Publication number: 20240258116Abstract: Exemplary semiconductor processing methods may include flowing an etchant precursor into a processing region of a semiconductor processing chamber. A substrate may be housed within the processing region. The substrate may define an exposed region of a titanium-containing material. The methods may include contacting the substrate with the etchant precursor. The methods may include removing at least a portion of the titanium-containing material.Type: ApplicationFiled: January 26, 2023Publication date: August 1, 2024Applicant: Applied Materials, Inc.Inventors: Baiwei Wang, Wanxing Xu, Lisa J. Enman, Aaron Dangerfield, Rohan Puligoru Reddy, Xiaolin C. Chen, Mikhail Korolik, Bhaskar Jyoti Bhuyan, Zhenjiang Cui, Anchuan Wang
-
Publication number: 20230420259Abstract: Described herein is a method for selectively cleaning and/or etching a sample. The method includes selectively forming a film in a trench of a substrate such that the trench may be selectively etched. A polymer film is deposited on the bottom surface of the trench without being deposited on the side wall. A second film is selectively formed in the trench without forming the second film on the polymer film. The polymer is then removed from the bottom surface of the trench and then etching is performed on the bottom surface of the trench using an etch chemistry, wherein the second film protects the side wall from being etched.Type: ApplicationFiled: June 9, 2022Publication date: December 28, 2023Inventors: David Thompson, Bhaskar Jyoti Bhuyan, Mark Saly, Lisa Enman, Aaron Dangerfield, Jesus Candelario Mendoza, Jeffrey W. Anthis, Lakmal Kalutarage
-
Patent number: 11848229Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups, at least one functional group selected from amino groups, hydroxyl groups, ether linkages or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.Type: GrantFiled: October 21, 2022Date of Patent: December 19, 2023Assignee: Applied Materials, Inc.Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
-
Publication number: 20230317516Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a metal-carbonyl containing precursor to form a self-assembled monolayer (SAM) on metallic surfaces.Type: ApplicationFiled: July 14, 2022Publication date: October 5, 2023Applicant: Applied Materials, Inc.Inventors: Muthukumar Kaliappan, Michael Haverty, Bhaskar Jyoti Bhuyan, Mark Saly, Aaron Dangerfield, Michael L. McSwiney, Feng Q. Liu, Xiangjin Xie
-
Publication number: 20230295794Abstract: Methods of selectively depositing blocking layers on conductive surfaces over dielectric surfaces are described. In some embodiments, a 4-8 membered substituted heterocycle is exposed to a substrate to selectively form a blocking layer. In some embodiments, a layer is selectively deposited on the dielectric surface after the blocking layer is formed. In some embodiments, the blocking layer is removed.Type: ApplicationFiled: May 24, 2023Publication date: September 21, 2023Inventors: Lakmal C. Kalutarage, Bhaskar Jyoti Bhuyan, Aaron Dangerfield, Feng Q. Liu, Mark Saly, Michael Haverty, Muthukumar Kaliappan
-
Publication number: 20230253248Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. The methods include selectively depositing a self-assembled monolayer (SAM) on the bottom of the gap. The SAM comprises a hydrocarbon having a formula of H—C?C—R, wherein R is a linear alkyl chain or aryl group comprising from 1 to 20 carbon atoms or a formula of R?C?CR?, wherein R? and R? independently include a linear alkyl chain or aryl group comprising from 1 to 20 carbon atoms A barrier layer is formed on the SAM before selectively depositing a metal liner on the barrier layer. The SAM is removed after selectively depositing the metal liner on the barrier layer.Type: ApplicationFiled: March 8, 2023Publication date: August 10, 2023Applicant: Applied Materials, Inc.Inventors: Yang Zhou, Yong Jin Kim, Ge Qu, Zhiyuan Wu, Carmen Leal Cervantes, Feng Chen, Kevin Kashefi, Bhaskar Jyoti Bhuyan, Drew Phillips, Aaron Dangerfield
-
Patent number: 11702733Abstract: Methods of selectively depositing blocking layers on conductive surfaces over dielectric surfaces are described. In some embodiments, a 4-8 membered substituted heterocycle is exposed to a substrate to selectively form a blocking layer. In some embodiments, a layer is selectively deposited on the dielectric surface after the blocking layer is formed. In some embodiments, the blocking layer is removed.Type: GrantFiled: May 7, 2021Date of Patent: July 18, 2023Assignee: Applied Materials, Inc.Inventors: Lakmal C. Kalutarage, Bhaskar Jyoti Bhuyan, Aaron Dangerfield, Feng Q. Liu, Mark Saly, Michael Haverty, Muthukumar Kaliappan
-
Publication number: 20230197438Abstract: Methods of forming semiconductor devices by enhancing selective deposition are described. In some embodiments, a blocking layer is deposited on a metal surface before deposition of a barrier layer. A substrate with a metal surface, a dielectric surface and an aluminum oxide surface has a blocking layer deposited on the metal surface using an alkylsilane.Type: ApplicationFiled: February 14, 2023Publication date: June 22, 2023Applicant: Applied Materials, Inc.Inventors: Aaron Dangerfield, Jesus Candelario Mendoza-Gutierrez, Bhaskar Jyoti Bhuyan, Mark Saly
-
Publication number: 20230136499Abstract: Methods for selectively depositing on self-assembled monolayer (SAM) are disclosed. Some embodiments of the disclosure utilize a precursor of a Formula (I), Formula (II), Formula (III), and Formula (IV): RnSi(NR?R?)(4-n) (III), RnSiX(4-n) (IV), wherein R1 and R2 are independently selected from substituted or unsubstituted C1-C20 alkyl, or R1 and R2 form a substituted or unsubstituted C1-C20 cycloalkyl ring, and wherein R3, R4, R5, R6, Rn are independently selected from hydrogen, substituted or unsubstituted C1-C20 alkyl, substituted or unsubstituted C1-C20 alkoxy, and substituted or unsubstituted C1-C20 vinyl, X is a halide selected from Cl, Br, and I, and n is an integer from 1 to 3, to form a self-assembled monolayer (SAM) on a damaged silicon nitride layer to prevent critical dimension blow out of a feature in a silicon nitride layer substrate.Type: ApplicationFiled: June 20, 2022Publication date: May 4, 2023Applicant: Applied Materials, Inc.Inventors: Shumao Zhang, Bhaskar Jyoti Bhuyan, Aaron Dangerfield, Jesus Candelario Mendoza-Gutierrez, Le Zhang, David T. Or, Mark Saly, Jiang Lu
-
Publication number: 20230132200Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups selected from alkene, alkyne, ketone, hydroxyl, aldehyde, or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.Type: ApplicationFiled: October 21, 2022Publication date: April 27, 2023Applicant: Applied Materials, Inc.Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
-
Publication number: 20230126055Abstract: Methods for selectively depositing on metallic surfaces are disclosed. Some embodiments of the disclosure utilize a hydrocarbon having at least two functional groups, at least one functional group selected from amino groups, hydroxyl groups, ether linkages or combinations thereof to form a self-assembled monolayer (SAM) on metallic surfaces.Type: ApplicationFiled: October 21, 2022Publication date: April 27, 2023Applicant: Applied Materials, Inc.Inventors: Michael L. McSwiney, Bhaskar Jyoti Bhuyan, Mark Saly, Drew Phillips, Aaron Dangerfield, David Thompson, Kevin Kashefi, Xiangjin Xie
-
Publication number: 20220372616Abstract: Methods of selectively depositing blocking layers on conductive surfaces over dielectric surfaces are described. In some embodiments, a 4-8 membered substituted heterocycle is exposed to a substrate to selectively form a blocking layer. In some embodiments, a layer is selectively deposited on the dielectric surface after the blocking layer is formed. In some embodiments, the blocking layer is removed.Type: ApplicationFiled: May 7, 2021Publication date: November 24, 2022Applicant: Applied Materials, Inc.Inventors: Lakmal C. Kalutarage, Bhaskar Jyoti Bhuyan, Aaron Dangerfield, Feng Q. Liu, Mark Saly, Michael Haverty, Muthukumar Kaliappan
-
Publication number: 20220308453Abstract: Embodiments disclosed herein include methods of depositing a positive tone photoresist using dry deposition and oxidation treatment processes. In an example, a method for forming a photoresist layer over a substrate in a vacuum chamber includes providing a metal precursor vapor into the vacuum chamber. The method further includes providing an oxidant vapor into the vacuum chamber, where a reaction between the metal precursor vapor and the oxidant vapor results in the formation of a positive tone photoresist layer on a surface of the substrate. The positive tone photoresist layer is a metal-oxo containing material. The method further includes performing a post anneal process of the metal-oxo containing material in an oxygen-containing environment.Type: ApplicationFiled: March 1, 2022Publication date: September 29, 2022Inventors: Lakmal Charidu Kalutarage, Aaron Dangerfield, Mark Joseph Saly