Patents by Inventor Aaron Gibby

Aaron Gibby has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110180693
    Abstract: An area effective system and method for improving power supply rejection ratio (PSRR) in an optical sensor front end, is provided. Moreover, low pass filter (LPF) that enables the reference voltage in the front end of the optical sensor, to be referred to the same substrate as that employed by the sensor. In one example, the LPF includes a capacitor, implemented using a Deep-N-Well (DNW) depletion capacitor, which is utilized to connect the reference voltage to the same substrate. Additionally, the DNW allows an area efficient realization of the LPF. The system and method disclosed herein improves the PSRR by a factor of around 40 dB for 5 MHz modulation.
    Type: Application
    Filed: January 25, 2011
    Publication date: July 28, 2011
    Applicant: INTERSIL AMERICAS INC.
    Inventors: David W. Ritter, Philip Golden, Aaron Gibby, Carl Warren Craddock
  • Publication number: 20110115047
    Abstract: Methods and structures for a semiconductor device can use mask openings of varying widths to form structures of different depths, different materials, and different functionality. For example, processes and structures for forming shallow trench isolation, deep isolation, trench capacitors, base, emitter, and collector, among other structures for a lateral bipolar transistor are described.
    Type: Application
    Filed: June 4, 2010
    Publication date: May 19, 2011
    Inventors: Francois Hebert, Aaron Gibby, Stephen Joseph Gaul
  • Publication number: 20110084318
    Abstract: A junction field effect transistor semiconductor device and method can include a top gate interposed between a source region and a drain region, and which can extend across an entire surface of the channel region from the source region to the drain region. Top gate doping can be configured such that the top gate can remain depleted throughout operation of the device. An embodiment of a device so configured can be used in precision, high-voltage applications.
    Type: Application
    Filed: March 18, 2010
    Publication date: April 14, 2011
    Inventor: Aaron Gibby