Patents by Inventor Aaron Hoy

Aaron Hoy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131735
    Abstract: A method includes: at a mobile robot, travelling according to a current path; using a sensor of the mobile robot, capturing sensor data representing a vicinity of the mobile robot; detecting, based on the sensor data, an obstacle obstructing the current path; in response to detecting the obstacle, outputting a request for a status change corresponding to the obstacle; receiving at the mobile robot, in response to the request for a status change, data defining an updated status of the obstacle; selecting, based on the updated status data, a navigational action between (i) continuing to travel according to the current path and (ii) generating a new path circumventing the obstacle; and executing the selected navigational action.
    Type: Application
    Filed: October 19, 2022
    Publication date: April 25, 2024
    Inventors: Melonee Wise, Aaron Hoy, Derek King, Micaela Angeli, Chinmay Shah
  • Publication number: 20240131703
    Abstract: A method includes: storing, at a mobile robot, a local repository of self-assigned task definitions; determining, at a processor of the mobile robot, that a local activity metric associated with tasks assigned to the mobile robot by a central server meets an idle criterion; in response to determining that the local activity metric meets the idle criterion, selecting, by the processor, one of the self-assigned task definitions from the local repository; and initiating execution of a self-assigned task corresponding to the selected self-assigned task definition at the mobile robot.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 25, 2024
    Inventors: Melonee Wise, Aaron Hoy, Derek King, Micaela Angeli, Chinmay Shah
  • Publication number: 20230375697
    Abstract: A method includes: capturing, via a navigational sensor of a mobile automation apparatus, three-dimensional point cloud data depicting a portion of an aisle containing a support structure, the support structure having a forward plane facing into the aisle; generating, from the point cloud data, a two-dimensional projection in a facility coordinate system; retrieving, from a stored map, an expected location of the forward plane of the support structure in the facility coordinate system; selecting, from the projection, a subset of regions satisfying a positional criterion relative to the location of the forward plane; determining, based on the selected subset of regions from the projection, an actual location of the forward plane of the support structure in the facility coordinate system; and providing the actual location of the forward plane to a navigational controller of the mobile automation apparatus.
    Type: Application
    Filed: November 11, 2022
    Publication date: November 23, 2023
    Inventors: Aaron Hoy, Derek King, Steffen Fuchs, Vishnu Sudheer Menon, David Dymesich, Robert Isaiah Chatman III, Jenna Guergah, Brian Richard Cairi, Melonee Wise, Alison Cheng, Katrin Beauchaud
  • Publication number: 20230324919
    Abstract: A method includes: maintaining a map of occupied regions of a facility; controlling a sensor of a mobile apparatus to capture sensor data within a field of view (FOV); based on a current location of the mobile apparatus in the facility, identifying an unobservable occupied region, located outside the FOV, in the map; selecting, from the map, a first reference occupied region having a first reference identifier, and a second reference occupied region having a second reference identifier; generating a first connection score associating the unobservable occupied region with the first reference occupied region, and a second connection score associating the unobservable occupied region with the second reference occupied region; selecting a handling operation for the unobservable occupied region, based on the first and second connection scores; updating the map according to the selected handling operation; and controlling a locomotive assembly of the mobile apparatus according to the updated map.
    Type: Application
    Filed: April 6, 2022
    Publication date: October 12, 2023
    Inventor: Aaron Hoy
  • Patent number: 11331804
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: May 17, 2022
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210291367
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: June 7, 2021
    Publication date: September 23, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Patent number: 11059176
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: July 13, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Patent number: 11059177
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: July 13, 2021
    Assignee: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210205993
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Applicant: Fetch Robotics, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, III, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson
  • Publication number: 20210178595
    Abstract: A system for facility monitoring and reporting to improve safety using one or more robots includes: a network; a plurality of autonomous mobile robots operating in a facility, the robots configured to monitor facility operation, the robots further configured to detect a predetermined critical condition, the robots operably connected to the network; a server operably connected to the robots over the network; and an individual robot operably connected to the server over the network, the individual robot operating in the facility, the robots not comprising the individual robot, the individual robot configured to monitor facility operation; wherein the robots are configured to regularly produce a regular report under normal operating conditions, the report displaying data received from the server, wherein the robots are further configured to produce to the server a critical condition report upon occurrence of the critical condition.
    Type: Application
    Filed: December 16, 2020
    Publication date: June 17, 2021
    Applicant: Fetch Robotcs, Inc.
    Inventors: Niharika Arora, Melonee Wise, Brian Cairl, Carl Saldanha, Robert Chatman, Levon Avagyan, Aaron Hoy, Stefan Nusser, David Dymesich, David Robson