Patents by Inventor Aaron J. Grenat

Aaron J. Grenat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10060955
    Abstract: A processing system includes one or more power supply monitors (PSMs) to measure one or more first voltages corresponding to one or more locations in the processing system. The measurements are performed concurrently with the processing system executing one or more code loops. The processing system also includes calibration logic to modify a second voltage provided to the processing system based on a comparison of a reference voltage and the one or more first voltages. The reference voltage is determined based on previous execution of the one or more code loops by the processing system.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: August 28, 2018
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Aaron J. Grenat, Robert A. Hershberger, Sriram Sambamurthy, Samuel D. Naffziger, Christopher E. Tressler, Sho-Chien Kang, Joseph P. Shannon, Krishna Sai Bernucho, Ashwin Chincholi, Michael J. Austin, Steven F. Liepe, Umair B. Cheema
  • Patent number: 9621143
    Abstract: Techniques are disclosed relating to detecting and minimizing timing problems created by clock domain crossing (CDC) in integrated circuits. In various embodiments, one or more timing parameters are associated with a path that crosses between clock domains in an integrated circuit, where the one or more timing parameters specify a propagation delay for the path. In one embodiment, the timing parameters may be distributed to different design stages using a configuration file. In some embodiments, the one or more parameters may be used in conjunction with an RTL model to simulate propagation of a data signal along the path. In some embodiments, the one or more parameters may be used in conjunction with a netlist to create a physical design for the integrated circuit, where the physical design includes a representation of the path that has the specified propagation delay.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: April 11, 2017
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Michael J. Osborn, Michael J. Tresidder, Aaron J. Grenat, Joseph Kidd, Priyank Parakh, Steven J. Kommrusch
  • Publication number: 20150378411
    Abstract: A processing system includes one or more power supply monitors (PSMs) to measure one or more first voltages corresponding to one or more locations in the processing system. The measurements are performed concurrently with the processing system executing one or more code loops. The processing system also includes calibration logic to modify a second voltage provided to the processing system based on a comparison of a reference voltage and the one or more first voltages. The reference voltage is determined based on previous execution of the one or more code loops by the processing system.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 31, 2015
    Inventors: Aaron J. Grenat, Robert A. Hershberger, Sriram Sambamurthy, Samuel D. Naffziger, Christopher E. Tressler, Sho-Chien Kang, Joseph P. Shannon, Krishna Sai Bernucho, Ashwin Chincholi, Michael J. Austin, Steven F. Liepe, Umair B. Cheema
  • Publication number: 20140062555
    Abstract: Techniques are disclosed relating to detecting and minimizing timing problems created by clock domain crossing (CDC) in integrated circuits. In various embodiments, one or more timing parameters are associated with a path that crosses between clock domains in an integrated circuit, where the one or more timing parameters specify a propagation delay for the path. In one embodiment, the timing parameters may be distributed to different design stages using a configuration file. In some embodiments, the one or more parameters may be used in conjunction with an RTL model to simulate propagation of a data signal along the path. In some embodiments, the one or more parameters may be used in conjunction with a netlist to create a physical design for the integrated circuit, where the physical design includes a representation of the path that has the specified propagation delay.
    Type: Application
    Filed: November 8, 2013
    Publication date: March 6, 2014
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Michael J. Osborn, Michael J. Tresidder, Aaron J. Grenat, Joseph Kidd, Priyank Parakh, Steven J. Kommrusch
  • Patent number: 8595563
    Abstract: Described are a circuit and a method of analyzing and correcting a fault occurring in operation of the circuit during a power gating sequence. The method includes executing a modification of the power gating sequence that includes maintaining operation of a trace capture buffer (TCB); recording, in the TCB, events occurring during the executing; and correcting the fault based on analysis of the events recorded in the TCB. The circuit includes a plurality of components including a TCB, and a switch configured to maintain power to the TCB in a first state and turn off power to the TCB in a second state.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: November 26, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Benjamin Tsien, Kiran Bondalapati, Hao Huang, William A. Hughes, Eric Rentschler, Jeremy Schreiber, Aaron J. Grenat
  • Patent number: 8584067
    Abstract: Techniques are disclosed relating to detecting and minimizing timing problems created by clock domain crossing (CDC) in integrated circuits. In various embodiments, one or more timing parameters are associated with a path that crosses between clock domains in an integrated circuit, where the one or more timing parameters specify a propagation delay for the path. In one embodiment, the timing parameters may be distributed to different design stages using a configuration file. In some embodiments, the one or more parameters may be used in conjunction with an RTL model to simulate propagation of a data signal along the path. In some embodiments, the one or more parameters may be used in conjunction with a netlist to create a physical design for the integrated circuit, where the physical design includes a representation of the path that has the specified propagation delay.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Michael J. Osborn, Michael J. Tresidder, Aaron J. Grenat, Joseph Kidd, Priyank Parakh, Steven J. Kommrusch
  • Publication number: 20130024829
    Abstract: Described are a circuit and a method of analyzing and correcting a fault occurring in operation of the circuit during a power gating sequence. The method includes executing a modification of the power gating sequence that includes maintaining operation of a trace capture buffer (TCB); recording, in the TCB, events occurring during the executing; and correcting the fault based on analysis of the events recorded in the TCB. The circuit includes a plurality of components including a TCB, and a switch configured to maintain power to the TCB in a first state and turn off power to the TCB in a second state.
    Type: Application
    Filed: July 18, 2011
    Publication date: January 24, 2013
    Applicant: ADVANCED MICRO DEVICES, INC.
    Inventors: Benjamin Tsien, Kiran Bondalapati, Hao Huang, William A. Hughes, Eric Rentschler, Jeremy Schreiber, Aaron J. Grenat
  • Publication number: 20120110529
    Abstract: Techniques are disclosed relating to detecting and minimizing timing problems created by clock domain crossing (CDC) in integrated circuits. In various embodiments, one or more timing parameters are associated with a path that crosses between clock domains in an integrated circuit, where the one or more timing parameters specify a propagation delay for the path. In one embodiment, the timing parameters may be distributed to different design stages using a configuration file. In some embodiments, the one or more parameters may be used in conjunction with an RTL model to simulate propagation of a data signal along the path. In some embodiments, the one or more parameters may be used in conjunction with a netlist to create a physical design for the integrated circuit, where the physical design includes a representation of the path that has the specified propagation delay.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 3, 2012
    Inventors: Michael J. Osborn, Michael J. Tresidder, Aaron J. Grenat, Joseph Kidd, Priyank Parakh, Steven J. Kommrusch