Patents by Inventor Aaron James Sander

Aaron James Sander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12236345
    Abstract: Implementations are directed to receiving a set of tuples, each tuple including an entity and a product from a set of products, for each tuple: generating, by an embedding module, a total latent vector as input to a recommender network, the total latent vector generated based on a structural vector, a textual vector, and a categorical vector, each generated based on a product profile of a respective product and an entity profile of the entity, generating, by a context integration module, a latent context vector based on a context vector representative of a context of the entity, and inputting the total latent vector and the latent context vector to the recommender network, the recommender network being trained by few-shot learning using a multi-task loss function, and generating, by the recommender network, a prediction including a set of recommendations specific to the entity.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: February 25, 2025
    Assignee: Accenture Global Solutions Limited
    Inventors: Lan Guan, Guanglei Xiong, Christopher Yen-Chu Chan, Jayashree Subrahmonia, Aaron James Sander, Sukryool Kang, Wenxian Zhang, Anwitha Paruchuri
  • Publication number: 20220300804
    Abstract: Implementations are directed to receiving a set of tuples, each tuple including an entity and a product from a set of products, for each tuple: generating, by an embedding module, a total latent vector as input to a recommender network, the total latent vector generated based on a structural vector, a textual vector, and a categorical vector, each generated based on a product profile of a respective product and an entity profile of the entity, generating, by a context integration module, a latent context vector based on a context vector representative of a context of the entity, and inputting the total latent vector and the latent context vector to the recommender network, the recommender network being trained by few-shot learning using a multi-task loss function, and generating, by the recommender network, a prediction including a set of recommendations specific to the entity.
    Type: Application
    Filed: June 17, 2021
    Publication date: September 22, 2022
    Inventors: Lan Guan, Guanglei Xiong, Christopher Yen-Chu Chan, Jayashree Subrahmonia, Aaron James Sander, Sukryool Kang, Wenxian Zhang, Anwitha Paruchuri