Patents by Inventor Aaron Jay Knobloch

Aaron Jay Knobloch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125653
    Abstract: Techniques for using a pyrometer to measure one or more operating characteristics of a target are provided. In one example aspect, a pyrometer is oriented relative to a target having target elements spaced from one another such that, as the target is rotated, the pyrometer alternately i) senses a target element for a period of time; and ii) then does not sense any of the target elements for a period of time as no appreciable signal is received. The pyrometer generates an output signal having alternating target pulse widths and null widths. The target and null widths have different amplitudes. The amplitude of the null signal provides an amplitude baseline for which the amplitudes of the target widths or signals may be compared to so that a temperature or other operating characteristic associated with the target can be determined.
    Type: Application
    Filed: October 12, 2022
    Publication date: April 18, 2024
    Inventors: Emad Andarawis Andarawis, Aaron Jay Knobloch
  • Publication number: 20230243704
    Abstract: Systems and methods disclosed herein use a multi-color pyrometer configured to determine a first temperature in a high temperature range and a single-color pyrometer configured to determine second temperature in a low temperature range. The system uses information gained from determination of the first temperature in the high temperature range to facilitate later determining the second temperature in the low temperature range. The first temperature in the high temperature range and the second temperature in the low temperature range are used to monitor and control different engine operations that occur at different times.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Inventors: Aaron Jay Knobloch, Adam Halverson
  • Publication number: 20220228923
    Abstract: An apparatus and method for determining a temperature in a system having an object, an optical sensor, and a gas flow passing between the object and the optical sensor, sensing, with the optical sensor, a wavelength emitted from the object and indicative of an attenuation, sensing, with the optical sensor, a wavelength emitted from the object and indicative of a temperature of at least one of the object or the gas; and calculating a temperature of the gas using the wavelengths.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 21, 2022
    Inventors: Aaron Jay Knobloch, Christian M. Heller
  • Patent number: 10488429
    Abstract: An accelerometer includes a controller, a light source operatively coupled to the controller, and a bifurcated waveguide coupled to the light source and configured to receive light output by the light source. The bifurcated waveguide includes a first waveguide portion and a second waveguide portion. The accelerometer also includes a first resonator operatively coupled to the controller and configured to receive light from the first waveguide portion, and a second resonator operatively coupled to the controller and configured to receive light from the second waveguide portion. The first resonator includes a first proof mass, and the second resonator includes a second proof mass.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: November 26, 2019
    Assignee: General Electric Company
    Inventors: Sergey Alexandrovich Zotov, Ansas Matthias Kasten, Yizhen Lin, Jason Harris Karp, William Albert Challener, Aaron Jay Knobloch
  • Patent number: 10450863
    Abstract: A gas turbine engine and system for measuring torque for a gas turbine engine shaft is provided. The system may include a first sensor module, a second sensor module, a first coupler, a second coupler, and a static antenna. The first and second sensor modules may include strain sensors positioned on the gas turbine engine shaft. The first coupler may be positioned on the gas turbine engine shaft and electrically connected with the first sensor module. The second coupler may be positioned on the gas turbine engine shaft and electrically connected with the second sensor module. The static antenna may include a first band and a second band. The first signal band may be in operable communication with the first sensor module and positioned radially outward from the first coupler. The second signal band may be in operable communication with the second sensor module and positioned radially outward from the second coupler.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: October 22, 2019
    Assignee: General Electric Company
    Inventors: Douglas Scott Jacobs, Aaron Jay Knobloch, Robert Edward Goeller, Mudassar Ali Muhammad, Joseph Alfred Iannotti
  • Publication number: 20180246139
    Abstract: An accelerometer includes a controller, a light source operatively coupled to the controller, and a bifurcated waveguide coupled to the light source and configured to receive light output by the light source. The bifurcated waveguide includes a first waveguide portion and a second waveguide portion. The accelerometer also includes a first resonator operatively coupled to the controller and configured to receive light from the first waveguide portion, and a second resonator operatively coupled to the controller and configured to receive light from the second waveguide portion. The first resonator includes a first proof mass, and the second resonator includes a second proof mass.
    Type: Application
    Filed: June 9, 2017
    Publication date: August 30, 2018
    Inventors: Sergey Alexandrovich Zotov, Ansas Matthias Kasten, Yizhen Lin, Jason Harris Karp, William Albert Challener, Aaron Jay Knobloch
  • Patent number: 9909971
    Abstract: An aircraft including a jet engine including a core having a compressor and combustion chamber, and a particulate sensor located within the core and a particulate detection method for an aircraft having a jet engine where the method includes sensing particulates within the core and providing a corresponding value for the sensed particulates and providing an indication related thereto.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: March 6, 2018
    Assignee: GE AVIATION SYSTEMS LLC
    Inventors: Aaron Jay Knobloch, Andrew Scott Kessie, Joseph Bernard Steffler, Brian Jacob Loyal
  • Publication number: 20170350253
    Abstract: A gas turbine engine and system for measuring torque for a gas turbine engine shaft is provided. The system may include a first sensor module, a second sensor module, a first coupler, a second coupler, and a static antenna. The first and second sensor modules may include strain sensors positioned on the gas turbine engine shaft. The first coupler may be positioned on the gas turbine engine shaft and electrically connected with the first sensor module. The second coupler may be positioned on the gas turbine engine shaft and electrically connected with the second sensor module. The static antenna may include a first band and a second band. The first signal band may be in operable communication with the first sensor module and positioned radially outward from the first coupler. The second signal band may be in operable communication with the second sensor module and positioned radially outward from the second coupler.
    Type: Application
    Filed: June 2, 2016
    Publication date: December 7, 2017
    Inventors: Douglas Scott Jacobs, Aaron Jay Knobloch, Robert Edward Goeller, Mudassar Ali Muhammad, Joseph Alfred Iannotti
  • Publication number: 20170167287
    Abstract: A system for measuring torque for a gas turbine engine shaft is provided. The system can include a torque sensor positioned at an engine shaft. The torque sensor, itself, can include a strain sensor for obtaining a strain measurement of the engine shaft and a temperature sensor for obtaining a temperature measurement of the engine shaft. The system can also include a wireless communication element operably connected to the torque sensor for transferring the strain measurement and the temperature measurement. In addition, one or more memory storage units co-located with the torque sensor can be provided. The one or more memory storage units can store calibration information for the system. The calibration information is used by one or more processors to calibrate the strain measurement obtained by the strain and the temperature measurement obtained by the temperature sensor. Methods of using the system are also provided.
    Type: Application
    Filed: December 9, 2015
    Publication date: June 15, 2017
    Inventors: Douglas Scott Jacobs, Aaron Jay Knobloch, Robert Edward Goeller, Mudassar Ali Muhammad
  • Publication number: 20160380317
    Abstract: A strain sensor, a system for monitoring a state of a battery cell, and a battery including the strain sensor. The strain sensor includes a thin, flexible substrate, a plurality of piezoresistors mounted on the substrate, an input for receiving a voltage signal, an output for providing an output voltage signal from the plurality of piezoresistors. The plurality of piezoresistors are connected to form a circuit that is insensitive to a change in temperature and an in-plane deformation of the substrate. The system includes the strain sensor, a source of voltage, and an analysis module configured for receiving a voltage signal based on the output voltage signal provided at the output of the strain sensor and calculating a state of charge or a state of health of a battery cell based on the received voltage signal. The battery includes the strain sensor and a space for spacing adjacent battery cells.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 29, 2016
    Inventors: Yizhen Lin, Aaron Jay Knobloch, Christopher James Kapusta, Jason Harris Karp
  • Publication number: 20160370210
    Abstract: The invention is directed to modular flexible sensor arrays that are adaptable, easy to manufacture, and which reduce material waste. A method of making a modular flexible sensor array is provided, including the steps of applying at least one sensing element to a first substrate to form at least one sensor, applying at least one electrically conductive interconnect to a surface of a second flexible substrate, and coupling the at least one sensor to the at least one electrically conductive interconnect such that the at least one sensor is electrically connected thereto.
    Type: Application
    Filed: June 18, 2015
    Publication date: December 22, 2016
    Inventors: Christopher James Kapusta, Aaron Jay Knobloch, Jason Karp
  • Publication number: 20160202168
    Abstract: An aircraft including a jet engine including a core having a compressor and combustion chamber, and a particulate sensor located within the core and a particulate detection method for an aircraft having a jet engine where the method includes sensing particulates within the core and providing a corresponding value for the sensed particulates and providing an indication related thereto.
    Type: Application
    Filed: September 6, 2013
    Publication date: July 14, 2016
    Inventors: Aaron Jay KNOBLOCH, Andrew Scott KESSIE, Joseph Bernard STEFFLER, Brian Jacob LOYAL
  • Patent number: 9170129
    Abstract: A system for sensing the position of a movable object includes a polarization maintaining fiber configured to receive light from a light source; an optical system configured to rotate an angle of polarization of the light by a first predetermined angle; a low birefringence fiber connected to the optical system at a first end and having a mirror connected to a second end configured to reflect the light and rotate the angle of polarization at a second predetermined angle, the second end being configured to overlap a magnetic field of the a magnet attached to the object. The angle of polarization is rotated to a third predetermined angle proportional to at least one of the strength of the magnetic field and an amount of the overlap. The optical system is configured to decompose the third predetermined angle into a first component and a second component. A detector is configured to detect a differential between the first and second components indicative of the amount of the overlap.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: October 27, 2015
    Assignee: General Electric Company
    Inventors: Sachin Narahari Dekate, Glen Peter Kose, Aaron Jay Knobloch, Boon Kwee Lee, Sameer Dinkar Vartak, Seema Somani
  • Publication number: 20150255834
    Abstract: A battery cell that comprises a sensing platform with sensing elements configured to provide information about in-situ characteristics and parameters of the battery cell. Embodiments of the battery cell can have the sensing platform integrated into the structure of the battery cell, as a separate structure incorporated in the battery cell, and combinations thereof. In one embodiment, the battery cell comprises a sensing platform having sensing elements proximate a localized measurement region, where the sensing platform comprises a substrate with material layers disposed thereon. The material layers comprise at least one sensing layer that forms the sensing elements so that the sensing elements are responsive to properties of the battery cell.
    Type: Application
    Filed: May 19, 2015
    Publication date: September 10, 2015
    Inventors: Brian Allen Engle, Emad Andarawis, Ertugrul Berkcan, Canan Uslu Hardwicke, Aaron Jay Knobloch
  • Patent number: 9054397
    Abstract: A battery cell that comprises a sensing platform with sensing elements configured to provide information about in-situ characteristics and parameters of the battery cell. Embodiments of the battery cell can have the sensing platform integrated into the structure of the battery cell, as a separate structure incorporated in the battery cell, and combinations thereof. In one embodiment, the battery cell comprises a sensing platform having sensing elements proximate a localized measurement region, where the sensing platform comprises a substrate with material layers disposed thereon. The material layers comprise at least one sensing layer that forms the sensing elements so that the sensing elements are responsive to properties of the battery cell.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: June 9, 2015
    Assignee: Amphenol Thermometrics, Inc.
    Inventors: Brian Allen Engle, Emad Andarawis, Ertugrul Berkcan, Canan Uslu Hardwicke, Aaron Jay Knobloch
  • Patent number: 9042072
    Abstract: A method of method of forming a wide band-gap semiconductor transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a connecting component configured to electrically couple a first electrical component to a second electrical component located remotely from the first electrical component through one or more electrical conduits and a transient voltage suppressor device positioned within the connecting component and electrically coupled to the one or more electrical conduits wherein the TVS device includes a wide band-gap semiconductor material.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: May 26, 2015
    Assignee: General Electric Company
    Inventors: Aaron Jay Knobloch, Emad Andarawis Andarawis, Harry Kirk Mathews, Jr., Avinash Srikrishnan Kashyap
  • Publication number: 20150108335
    Abstract: A system for sensing the position of a movable object includes a polarization maintaining fiber configured to receive light from a light source; an optical system configured to rotate an angle of polarization of the light by a first predetermined angle; a low birefringence fiber connected to the optical system at a first end and having a mirror connected to a second end configured to reflect the light and rotate the angle of polarization at a second predetermined angle, the second end being configured to overlap a magnetic field of the a magnet attached to the object. The angle of polarization is rotated to a third predetermined angle proportional to at least one of the strength of the magnetic field and an amount of the overlap. The optical system is configured to decompose the third predetermined angle into a first component and a second component. A detector is configured to detect a differential between the first and second components indicative of the amount of the overlap.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sachin Narahari Dekate, Glen Peter Kose, Aaron Jay Knobloch, Boon Kwee Lee, Sameer Dinkar Vartak, Seema Somani
  • Publication number: 20140185056
    Abstract: A system for sensing the position of a movable object includes a polarization maintaining fiber configured to receive light from a light source; an optical system configured to rotate an angle of polarization of the light by a first predetermined angle; a low birefringence fiber connected to the optical system at a first end and having a mirror connected to a second end configured to reflect the light and rotate the angle of polarization at a second predetermined angle, the second end being configured to overlap a magnetic field of the a magnet attached to the object. The angle of polarization is rotated to a third predetermined angle proportional to at least one of the strength of the magnetic field and an amount of the overlap. The optical system is configured to decompose the third predetermined angle into a first component and a second component. A detector is configured to detect a differential between the first and second components indicative of the amount of the overlap.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sachin Narahari Dekate, Glen Peter Koste, Aaron Jay Knobloch, Boon Kwee Lee, Sameer Dinkar Vartak, Seema Somani
  • Publication number: 20130258541
    Abstract: A method of method of forming a wide band-gap semiconductor transient voltage suppressor (TVS) assembly and a system for a transient voltage suppressor (TVS) assembly are provided. The TVS assembly includes a connecting component configured to electrically couple a first electrical component to a second electrical component located remotely from the first electrical component through one or more electrical conduits and a transient voltage suppressor device positioned within the connecting component and electrically coupled to the one or more electrical conduits wherein the TVS device includes a wide band-gap semiconductor material.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Aaron Jay Knobloch, Emad Andarawis Andarawis, Harry Kirk Mathews, JR., Avinash Srikrishnan Kashyap
  • Patent number: 8199334
    Abstract: An optical pressure sensor interrogation system is provided. The system includes a light source for providing an optical signal to an optical pressure sensor and an optical coupler for receiving a reflected signal from the optical pressure sensor. The optical coupler splits the reflected signal and provides a first portion of the reflected signal to a first optical detector. The system further includes a filter for receiving a second portion of the reflected signal and providing a filtered signal to a second optical detector and a processing circuitry configured to obtain pressure based on a division or a subtraction of light intensities of the first and the second optical detector output signals. The processing circuitry is further configured to provide a feedback signal to the light source to control a wavelength of the optical signal.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: June 12, 2012
    Assignee: General Electric Company
    Inventors: David William Vernooy, Glen Peter Koste, Aaron Jay Knobloch