Patents by Inventor Aaron Liu

Aaron Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12044624
    Abstract: A system includes: an objective lens; a first light source to feed first illuminating light through the objective lens and into a flowcell (e.g., with a relatively thin film waveguide) to be installed in the system, the first illuminating light to be fed using a first grating on the flowcell; and a first image sensor to capture imaging light using the objective lens, wherein the first grating is positioned outside a field of view of the first image sensor. Dual-surface imaging can be performed. Flowcells with multiple swaths bounded by gratings can be used. An auto-alignment process can be performed.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: July 23, 2024
    Assignee: Illumina, Inc.
    Inventors: Yinghua Sun, Stanley S. Hong, Frederick Erie, Alex Nemiroski, M. Shane Bowen, Danilo Condello, Dietrich Dehlinger, Marco A. Krumbuegel, Anthony Lam, Aaron Liu, Bojan Obradovic, Mark Pratt
  • Publication number: 20220276169
    Abstract: A system includes: an objective lens; a first light source to feed first illuminating light through the objective lens and into a flowcell (e.g., with a relatively thin film waveguide) to be installed in the system, the first illuminating light to be fed using a first grating on the flowcell; and a first image sensor to capture imaging light using the objective lens, wherein the first grating is positioned outside a field of view of the first image sensor. Dual-surface imaging can be performed. Flowcells with multiple swaths bounded by gratings can be used. An auto-alignment process can be performed.
    Type: Application
    Filed: May 16, 2022
    Publication date: September 1, 2022
    Inventors: Yinghua Sun, Stanley S. Hong, Frederick Erie, Alex Nemiroski, M. Shane Bowen, Danilo Condello, Dietrich Dehlinger, Marco A. Krumbuegel, Anthony Lam, Aaron Liu, Bojan Obradovic, Mark Pratt
  • Patent number: 11360027
    Abstract: A system includes: an objective lens; a first light source to feed first illuminating light through the objective lens and into a flowcell (e.g., with a relatively thin film waveguide) to be installed in the system, the first illuminating light to be fed using a first grating on the flowcell; and a first image sensor to capture imaging light using the objective lens, wherein the first grating is positioned outside a field of view of the first image sensor. Dual-surface imaging can be performed. Flowcells with multiple swaths bounded by gratings can be used. An auto-alignment process can be performed.
    Type: Grant
    Filed: March 12, 2019
    Date of Patent: June 14, 2022
    Assignee: Illumina, Inc.
    Inventors: Yinghua Sun, Stanley S. Hong, Frederick Erie, Alex Nemiroski, M. Shane Bowen, Danilo Condello, Dietrich Dehlinger, Marco A. Krumbuegel, Anthony Lam, Aaron Liu, Bojan Obradovic, Mark Pratt
  • Patent number: 11226475
    Abstract: The disclosure provides for structured illumination microscopy (SIM) imaging systems. In one set of implementations, a SIM imaging system may be implemented as a multi-arm SIM imaging system, whereby each arm of the system includes a light emitter and a beam splitter (e.g., a transmissive diffraction grating) having a specific, fixed orientation with respect to the system's optical axis. In a second set of implementations, a SIM imaging system may be implemented as a multiple beam splitter slide SIM imaging system, where one linear motion stage is mounted with multiple beam splitters having a corresponding, fixed orientation with respect to the system's optical axis. In a third set of implementations, a SIM imaging system may be implemented as a pattern angle spatial selection SIM imaging system, whereby a fixed two-dimensional diffraction grating is used in combination with a spatial filter wheel to project one-dimensional fringe patterns on a sample.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: January 18, 2022
    Assignees: ILLUMINA, INC., ILLUMINA CAMBRIDGE LIMITED
    Inventors: Peter Clarke Newman, Danilo Condello, Shaoping Lu, Simon Prince, Merek C. Siu, Stanley S. Hong, Aaron Liu, Gary Mark Skinner, Geraint Wyn Evans
  • Patent number: 10996453
    Abstract: The disclosure provides for structured illumination microscopy (SIM) imaging systems. In one set of implementations, a SIM imaging system may be implemented as a multi-arm SIM imaging system, whereby each arm of the system includes a light emitter and a beam splitter (e.g., a transmissive diffraction grating) having a specific, fixed orientation with respect to the system's optical axis. In a second set of implementations, a SIM imaging system may be implemented as a multiple beam splitter slide SIM imaging system, where one linear motion stage is mounted with multiple beam splitters having a corresponding, fixed orientation with respect to the system's optical axis. In a third set of implementations, a SIM imaging system may be implemented as a pattern angle spatial selection SIM imaging system, whereby a fixed two-dimensional diffraction grating is used in combination with a spatial filter wheel to project one-dimensional fringe patterns on a sample.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: May 4, 2021
    Assignee: ILLUMINA, INC.
    Inventors: Peter Clarke Newman, Danilo Condello, Shaoping Lu, Simon Prince, Merek C. Siu, Stanley S. Hong, Aaron Liu
  • Publication number: 20200218050
    Abstract: The disclosure provides for structured illumination microscopy (SIM) imaging systems. In one set of implementations, a SIM imaging system may be implemented as a multi-arm SIM imaging system, whereby each arm of the system includes a light emitter and a beam splitter (e.g., a transmissive diffraction grating) having a specific, fixed orientation with respect to the system's optical axis. In a second set of implementations, a SIM imaging system may be implemented as a multiple beam splitter slide SIM imaging system, where one linear motion stage is mounted with multiple beam splitters having a corresponding, fixed orientation with respect to the system's optical axis. In a third set of implementations, a SIM imaging system may be implemented as a pattern angle spatial selection SIM imaging system, whereby a fixed two-dimensional diffraction grating is used in combination with a spatial filter wheel to project one-dimensional fringe patterns on a sample.
    Type: Application
    Filed: January 14, 2019
    Publication date: July 9, 2020
    Inventors: Peter Clarke Newman, Danilo Condello, Shaoping Lu, Simon Prince, Merek C. Siu, Stanley S. Hong, Aaron Liu
  • Publication number: 20200192071
    Abstract: The disclosure provides for structured illumination microscopy (SIM) imaging systems. In one set of implementations, a SIM imaging system may be implemented as a multi-arm SIM imaging system, whereby each arm of the system includes a light emitter and a beam splitter (e.g., a transmissive diffraction grating) having a specific, fixed orientation with respect to the system's optical axis. In a second set of implementations, a SIM imaging system may be implemented as a multiple beam splitter slide SIM imaging system, where one linear motion stage is mounted with multiple beam splitters having a corresponding, fixed orientation with respect to the system's optical axis. In a third set of implementations, a SIM imaging system may be implemented as a pattern angle spatial selection SIM imaging system, whereby a fixed two-dimensional diffraction grating is used in combination with a spatial filter wheel to project one-dimensional fringe patterns on a sample.
    Type: Application
    Filed: January 14, 2019
    Publication date: June 18, 2020
    Inventors: Peter Clarke Newman, Danilo Condello, Shaoping Lu, Simon Prince, Merek C. Siu, Stanley S. Hong, Aaron Liu, Gary Mark Skinner, Geraint Wyn Evans
  • Publication number: 20190302024
    Abstract: A system includes: an objective lens; a first light source to feed first illuminating light through the objective lens and into a flowcell (e.g., with a relatively thin film waveguide) to be installed in the system, the first illuminating light to be fed using a first grating on the flowcell; and a first image sensor to capture imaging light using the objective lens, wherein the first grating is positioned outside a field of view of the first image sensor. Dual-surface imaging can be performed. Flowcells with multiple swaths bounded by gratings can be used. An auto-alignment process can be performed.
    Type: Application
    Filed: March 12, 2019
    Publication date: October 3, 2019
    Inventors: Yinghua Sun, Stanley S. Hong, Frederick Erie, Alex Nemiroski, M. Shane Bowen, Danilo Condello, Dietrich Dehlinger, Marco A. Krumbuegel, Anthony Lam, Aaron Liu, Bojan Obradovic, Mark Pratt
  • Publication number: 20120059850
    Abstract: A computer vision dating system analyzes combinations of face features of the system's user's photographs and recommends potential dating partners. A user selects preferred and not-preferred faces from a sample of other user's pictures. The system analyzes the features of the preferred and not-preferred faces comparing the combinations of features in both categories with the features of other users in the database to find the users that most match the collective features preferred by the user. These pictures are presented to the user. Data from the user's profile input are analyzed to automatically generate the sample pictures from which the user selects his/her preferences. As the users are presented pictures after their sample selection, they can continue to select and reject pictures allowing the system to learn and refine the combinations of features and better locate those that most conform to a user's most preferred photo images.
    Type: Application
    Filed: September 6, 2010
    Publication date: March 8, 2012
    Inventors: Jonathan Binnings Bent, Aaron Liu, Kenneth Zhou