Patents by Inventor AARON MENDELSOHN
AARON MENDELSOHN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12250060Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: GrantFiled: April 26, 2023Date of Patent: March 11, 2025Assignee: Viasat, Inc.Inventors: Aaron Mendelsohn, Donald Runyon
-
Patent number: 12212402Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: GrantFiled: August 21, 2023Date of Patent: January 28, 2025Assignee: Viasat, Inc.Inventors: Aaron Mendelsohn, Donald Runyon
-
Publication number: 20240413891Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: ApplicationFiled: June 25, 2024Publication date: December 12, 2024Inventors: Aaron Mendelsohn, Donald Runyon
-
Patent number: 12052087Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: GrantFiled: March 21, 2023Date of Patent: July 30, 2024Assignee: Viasat, Inc.Inventors: Aaron Mendelsohn, Donald Runyon
-
Patent number: 11863289Abstract: A satellite communication system in which a plurality of satellites each transit about the Earth in a common mid-Earth orbit. The orbit may be configured such that each satellite of the plurality of satellites follows a common, repeating ground track relative to the surface of the Earth. In turn, one or more repeating sky tracks may be defined relative to at least one ground station such that the ground station is in continuous communication with at least one of the plurality of satellites. In an example, a ground station may have visibility to a plurality of repeating sky tracks such that a plurality of discreet communication channels is provided that use different satellites for communication with user terminals of the satellite communications system.Type: GrantFiled: March 3, 2021Date of Patent: January 2, 2024Assignee: VIASAT, INC.Inventor: Aaron Mendelsohn
-
Publication number: 20230396327Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: ApplicationFiled: August 21, 2023Publication date: December 7, 2023Inventors: Aaron Mendelsohn, Donald Runyon
-
Patent number: 11770179Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: GrantFiled: March 4, 2021Date of Patent: September 26, 2023Assignee: Viasat, Inc.Inventors: Aaron Mendelsohn, Donald Runyon
-
Publication number: 20230283360Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: ApplicationFiled: April 26, 2023Publication date: September 7, 2023Inventors: Aaron Mendelsohn, Donald Runyon
-
Publication number: 20230224024Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: ApplicationFiled: March 21, 2023Publication date: July 13, 2023Inventors: Aaron Mendelsohn, Donald Runyon
-
Publication number: 20230133837Abstract: A satellite communication system in which a plurality of satellites each transit about the Earth in a common mid-Earth orbit. The orbit may be configured such that each satellite of the plurality of satellites follows a common, repeating ground track relative to the surface of the Earth. In turn, one or more repeating sky tracks may be defined relative to at least one ground station such that the ground station is in continuous communication with at least one of the plurality of satellites. In an example, a ground station may have visibility to a plurality of repeating sky tracks such that a plurality of discreet communication channels is provided that use different satellites for communication with user terminals of the satellite communications system.Type: ApplicationFiled: March 3, 2021Publication date: May 4, 2023Inventor: Aaron MENDELSOHN
-
Patent number: 11463160Abstract: Systems and methods are described for enabling flexible signal pathways within a satellite of a satellite communications system. For example, a pathway selection subsystem in a bent-pipe satellite enables a flexible arrangement of non-processed signal pathways that couple uplink antenna ports with downlink antenna ports via uplink and downlink pathway selectors. The pathway selectors can be dynamically reconfigured (e.g., on orbit), so that the configuration of the pathway selectors at one time can form one set of signal pathways between respective uplink and downlink antenna ports, and the configuration at another time can form a different set of signal pathways between respective uplink and downlink antenna ports. The pathway selection subsystem can have a simulcast mode which, when active, couples each of at least one of the uplink antenna ports with multiple of the user downlink antenna ports to form one or more simulcast signal pathways.Type: GrantFiled: March 20, 2020Date of Patent: October 4, 2022Assignee: ViaSat, Inc.Inventors: Aaron Mendelsohn, Donald Becker
-
Publication number: 20210211189Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: ApplicationFiled: March 4, 2021Publication date: July 8, 2021Inventors: Aaron Mendelsohn, Donald Runyon
-
Patent number: 10985833Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: GrantFiled: April 10, 2017Date of Patent: April 20, 2021Assignee: Viasat, Inc.Inventors: Aaron Mendelsohn, Donald Runyon
-
Publication number: 20200274611Abstract: The described features generally relate to adjusting a native antenna pattern of a satellite to adapt communications via the satellite. For example, a communications satellite may include an antenna having a feed array assembly, a reflector, and a linear actuator coupled between the feed array assembly and the reflector. The feed array assembly may have a plurality of feeds for communicating signals associated with a communications service, and the reflector may be configured to reflect the signals transmitted between the feed array assembly and one or more target devices. The linear actuator may have an adjustable length, or otherwise provide an adjustable position between the feed array assembly and the reflector. By adjusting the position of the feed array assembly relative to the reflector, the communications satellite may provide a communications service according to a plurality of native antenna patterns.Type: ApplicationFiled: April 10, 2017Publication date: August 27, 2020Applicant: VIASAT, INC.Inventors: Aaron MENDELSOHN, DONALD RUNYON
-
Publication number: 20200235807Abstract: Systems and methods are described for enabling flexible signal pathways within a satellite of a satellite communications system. For example, a pathway selection subsystem in a bent-pipe satellite enables a flexible arrangement of non-processed signal pathways that couple uplink antenna ports with downlink antenna ports via uplink and downlink pathway selectors. The pathway selectors can be dynamically reconfigured (e.g., on orbit), so that the configuration of the pathway selectors at one time can form one set of signal pathways between respective uplink and downlink antenna ports, and the configuration at another time can form a different set of signal pathways between respective uplink and downlink antenna ports. The pathway selection subsystem can have a simulcast mode which, when active, couples each of at least one of the uplink antenna ports with multiple of the user downlink antenna ports to form one or more simulcast signal pathways.Type: ApplicationFiled: March 20, 2020Publication date: July 23, 2020Inventors: Aaron Mendelsohn, Donald Becker
-
Patent number: 9762308Abstract: Systems and methods are described for paired-beam satellite communications in a flexible satellite architecture. Embodiments include one or more “bent pipe” satellites having multiple transponders for servicing a number of spot beams. Implementations include novel types of paired-beam transponders that communicatively couple gateway terminals and user terminals in different spot beams. Some implementations also include loopback transponders that communicatively couple gateway terminals and user terminals in the same spot beam. The transponders can use similar components, can provide for flexible forward-link and return-link spectrum allocation, and/or can provide other features. Certain embodiments further include support for utility gateway terminal service and/or redundancy (e.g., active spares) for one or more active components.Type: GrantFiled: November 25, 2015Date of Patent: September 12, 2017Assignee: ViaSat Inc.Inventors: Aaron Mendelsohn, Mark J. Miller
-
Publication number: 20160182142Abstract: Systems and methods are described for paired-beam satellite communications in a flexible satellite architecture. Embodiments include one or more “bent pipe” satellites having multiple transponders for servicing a number of spot beams. Implementations include novel types of paired-beam transponders that communicatively couple gateway terminals and user terminals in different spot beams. Some implementations also include loopback transponders that communicatively couple gateway terminals and user terminals in the same spot beam. The transponders can use similar components, can provide for flexible forward-link and return-link spectrum allocation, and/or can provide other features. Certain embodiments further include support for utility gateway terminal service and/or redundancy (e.g., active spares) for one or more active components.Type: ApplicationFiled: November 25, 2015Publication date: June 23, 2016Inventors: Aaron Mendelsohn, Mark J. Miller
-
Patent number: 8723724Abstract: Methods, systems, and devices are described for orienting a satellite antenna. In the methods, systems, and devices of the present disclosure, a satellite may provide multiple spot beams, each of the spot beams associated with a specific coverage area. The satellite may also transmit a wide beam downlink signal over a wide area beam having a coverage area that includes each of the spot beams. The satellite may receive an uplink beacon signal. The satellite antenna may be positioned according to azimuth and elevation determined from ground measurements of the spot beams and the satellite measurements of the uplink beacon signal.Type: GrantFiled: March 15, 2013Date of Patent: May 13, 2014Assignee: ViaSat, Inc.Inventors: Aaron Mendelsohn, Mark Miller
-
Publication number: 20100236823Abstract: Systems and methods for providing plated through-holes (PTH) in PCBs, which advantageously allow improved soldering capabilities, are described herein. Such systems and methods are achieved by reducing the heat sinking effects of PTHs by providing one or more vias surrounding the PTHs to provide an electrical connection between the PTH and the internal and bottom conductive layers of a PCB. In this regard, the PTHs are spaced apart from at least one of the internal conductive layers (e.g., ground or power layers), so the heat sinking effects are reduced. This feature enables molten solder to substantially fill the entire PTH before freezing, thereby improving the mechanical and electrical connection between an electrical component and the PCB.Type: ApplicationFiled: March 18, 2009Publication date: September 23, 2010Applicant: SUN MICROSYSTEMS, INC.Inventors: LIEN-FEN HU, JORGE E. MARTINEZ-VARGAS, JR., SAMUEL M. LEE, KARL A. SAUTER, AARON MENDELSOHN