Patents by Inventor Aaron P. Yamniuk

Aaron P. Yamniuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10787498
    Abstract: Provided herein are polypeptides comprising a modified fibronectin type III (Fn3) domain, wherein the amino acid corresponding to residue 58 of SEQ ID NO: 1 is mutated, and wherein the solubility is enhanced relative to the solubility of a Fn3 domain in which the amino acid corresponding to residue 58 of SEQ ID NO: 1 is not mutated. Also provided are libraries comprising a plurality of the polypeptides and a method for identifying a polypeptide that binds to a target.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: September 29, 2020
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Aaron P Yamniuk, Stanley R Krystek
  • Publication number: 20200299400
    Abstract: Provided herein are heavy chain constant regions (referred to as “modified heavy chain constant regions”), or functionally equivalent fragments thereof, that enhance biological properties of antibodies relative to the same antibodies in unmodified form. An exemplary modified heavy chain constant region includes an IgG2 hinge and three constant domains (i.e., CH1, CH2, and CH3 domains), wherein one or more of the constant region domains are of a non-IgG2 isotype (e.g., IgG1, IgG3 or IgG4). The heavy chain constant region may comprise wildtype human IgG domain sequences, or variants of these sequences. Also provided herein are methods for enhancing certain biological properties of antibodies that comprise a non-IgG2 hinge, such as internalization, agonism and antagonism, wherein the method comprises replacing the non-IgG2 hinge of the antibody with an IgG2 hinge.
    Type: Application
    Filed: May 24, 2018
    Publication date: September 24, 2020
    Applicant: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL
  • Publication number: 20200268901
    Abstract: Provided herein are heavy chain constant regions (referred to as “modified heavy chain constant regions”), or functionally equivalent fragments thereof, that enhance biological properties of antibodies relative to the same antibodies in unmodified form. An exemplary modified heavy chain constant region includes an IgG2 hinge and three constant domains (i.e., CH1, CH2, and CH3 domains), wherein one or more of the constant region domains are of a non-IgG2 isotype (e.g., IgG1, IgG3 or IgG4). The heavy chain constant region may comprise wildtype human IgG domain sequences, or variants of these sequences. Also provided herein are methods for enhancing certain biological properties of antibodies that comprise a non-IgG2 hinge, such as internalization, agonism and antagonism, wherein the method comprises replacing the non-IgG2 hinge of the antibody with an IgG2 hinge.
    Type: Application
    Filed: April 15, 2020
    Publication date: August 27, 2020
    Inventors: Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL
  • Patent number: 10653791
    Abstract: Provided herein are heavy chain constant regions (referred to as “modified heavy chain constant regions”), or functionally equivalent fragments thereof, that enhance biological properties of antibodies relative to the same antibodies in unmodified form. An exemplary modified heavy chain constant region includes an IgG2 hinge and three constant domains (i.e., CH1, CH2, and CH3 domains), wherein one or more of the constant region domains are of a non-IgG2 isotype (e.g., IgG1, IgG3 or IgG4). The heavy chain constant region may comprise wildtype human IgG domain sequences, or variants of these sequences. Also provided herein are methods for enhancing certain biological properties of antibodies that comprise a non-IgG2 hinge, such as internalization, agonism and antagonism, wherein the method comprises replacing the non-IgG2 hinge of the antibody with an IgG2 hinge.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: May 19, 2020
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Nils Lonberg, Alan J. Korman, Mark J. Selby, Bryan C. Barnhart, Aaron P. Yamniuk, Mohan Srinivasan, Karla A. Henning, Michelle Minhua Han, Ming Lei, Liang Schweizer, Sandra V. Hatcher, Arvind Rajpal
  • Publication number: 20200071412
    Abstract: Provided herein are agonistic antibodies, or antigen binding portions thereof, that bind to human CD40. Such antibodies optionally comprise Fc regions with enhanced specificity for Fc?RIIb. The invention also provides methods of treatment of cancer or chronic infection by administering the antibodies of the invention to a subject in need thereof.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 5, 2020
    Applicants: The Rockefeller University, BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Jeffrey V. Ravetch, Rony Dahan, Bryan C. Barnhart, Brigitte Devaux, Aaron P. Yamniuk, Shannon L. Okada, Brenda L. Stevens
  • Patent number: 10479838
    Abstract: Provided herein are agonistic antibodies, or antigen binding portions thereof, that bind to human CD40. Such antibodies optionally comprise Fc regions with enhanced specificity for Fc?RIIb. The invention also provides methods of treatment of cancer or chronic infection by administering the antibodies of the invention to a subject in need thereof.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: November 19, 2019
    Assignees: Bristol-Myers Squibb Company, The Rockefeller University
    Inventors: Jeffrey V. Ravetch, Rony Dahan, Bryan C. Barnhart, Brigitte Devaux, Aaron P. Yamniuk, Shannon L. Okada, Brenda L. Stevens
  • Publication number: 20190307855
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Application
    Filed: February 14, 2019
    Publication date: October 10, 2019
    Inventors: Sharon CLOAD, Linda ENGLE, Dasa LIPOVSEK, Malavi MADIREDDI, Ginger Chao RAKESTRAW, Joanna SWAIN, Wenjun ZHAO, Hui WEI, Aaron P. YAMNIUK, Vidhyashankar RAMAMURTHY, Alexander T. KOZHICH, Martin J. CORBETT, Stanley Richard KRYSTEK, JR.
  • Publication number: 20190300608
    Abstract: Provided herein are antibodies, or antigen-binding portions thereof, that specifically bind and inhibit TREM-1 signaling, wherein the antibodies do not bind to one or more Fc?Rs and do not induce the myeloid cells to produce inflammatory cytokines. Also provided are uses of such antibodies, or antigen-binding portions thereof, in therapeutic applications, such as treatment of autoimmune diseases.
    Type: Application
    Filed: April 1, 2019
    Publication date: October 3, 2019
    Applicant: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Achal Pashine, Michael L. Gosselin, Aaron P. Yamniuk, Derek A. Holmes, Guodong Chen, Priyanka Apurva Madia
  • Publication number: 20190284293
    Abstract: Provided are methods for clinical treatment of tumors (e.g., advanced solid tumors) using an anti-CD73 antibody in combination with an immuno-oncology agent, such as an anti-PD-1 antibody.
    Type: Application
    Filed: March 3, 2017
    Publication date: September 19, 2019
    Inventors: Nils LONBERG, Alan J. KORMAN, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Ming LEI, Emanuela SEGA, Angela GOODENOUGH, Maria JURE-KUNKEL, Guodong CHEN, John S. SACK, Richard Y. HUANG, Martin J. CORBETT, Joseph E. MYERS, Jr., Liang SCHWEIZER, Sandra V. HATCHER, Rachel A. ALTURA, Haichun HUANG, Pingping ZHANG, Edward J. HILT, Michael Nathan HEDRICK
  • Publication number: 20190248911
    Abstract: Provided herein are agonistic antibodies, or antigen binding portions thereof, that bind to human CD40. Such antibodies optionally comprise Fc regions with enhanced specificity for Fc?RIIb. The invention also provides methods of treatment of cancer or chronic infection by administering the antibodies of the invention to a subject in need thereof.
    Type: Application
    Filed: April 30, 2019
    Publication date: August 15, 2019
    Inventors: Bryan C. Barnhart, Brigitte Devaux, Aaron P. Yamniuk, Shannon L. Okada, Brenda L. Stevens
  • Patent number: 10245302
    Abstract: The present invention relates to fibronectin-based scaffold domain proteins that bind to myostatin. The invention also relates to the use of these proteins in therapeutic applications to treat muscular dystrophy, cachexia, sarcopenia, osteoarthritis, osteoporosis, diabetes, obesity, COPD, chronic kidney disease, heart failure, myocardial infarction, and fibrosis. The invention further relates to cells comprising such proteins, polynucleotides encoding such proteins or fragments thereof, and to vectors comprising the polynucleotides encoding the proteins.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 2, 2019
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Sharon Cload, Linda Engle, Dasa Lipovsek, Malavi Madireddi, Ginger Chao Rakestraw, Joanna Swain, Wenjun Zhao, Hui Wei, Aaron P. Yamniuk, Vidhyashankar Ramamurthy, Alexander T. Kozhich, Martin J. Corbett, Stanley Richard Krystek, Jr.
  • Publication number: 20190062456
    Abstract: The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to human Cluster of Differentiation 73 (CD73) with high affinity, and inhibit the activity of CD73, and optionally mediate antibody dependent CD73 internalization. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting the growth of a tumor cell expressing CD73 using the antibodies of the invention, including methods for treating various cancers.
    Type: Application
    Filed: August 30, 2018
    Publication date: February 28, 2019
    Inventors: Nils Lonberg, Alan J. Korman, Bryan C. Barnhart, Aaron P. Yamniuk, Mohan Srinivasan, Karla A. Henning, Ming Lei, Emanuela Sega, Angela Goodenough, Maria Jure-Kunkel, Guodong Chen, John S. Sack, Richard Y. Huang, Martin J. Corbett, Joseph E. Myers, JR., Liang Schweizer, Sandra V. Hatcher, Haichun Huang, Pingping Zhang
  • Publication number: 20190055320
    Abstract: The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to human Cluster of Differentiation 73 (CD73) with high affinity, and inhibit the activity of CD73, and optionally mediate antibody dependent CD73 internalization. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting the growth of a tumor cell expressing CD73 using the antibodies of the invention, including methods for treating various cancers.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 21, 2019
    Inventors: Nils LONBERG, Alan J. KORMAN, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Ming LEI, Emanuela SEGA, Angela GOODENOUGH, Maria JURE-KUNKEL, Guodong CHEN, John S. SACK, Richard Y. HUANG, Martin J. CORBETT, Joseph E. MYERS, JR., Liang SCHWEIZER, Sandra V. HATCHER, Haichun HUANG, Pingping ZHANG
  • Patent number: 10167343
    Abstract: The present invention provides isolated monoclonal antibodies, particularly human antibodies, that bind to human Cluster of Differentiation 73 (CD73) with high affinity, and inhibit the activity of CD73, and optionally mediate antibody dependent CD73 internalization. Nucleic acid molecules encoding the antibodies of the invention, expression vectors, host cells and methods for expressing the antibodies of the invention are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the invention are also provided. The invention also provides methods for inhibiting the growth of a tumor cell expressing CD73 using the antibodies of the invention, including methods for treating various cancers.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: January 1, 2019
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Nils Lonberg, Alan J. Korman, Bryan C. Barnhart, Aaron P. Yamniuk, Mohan Srinivasan, Karla A. Henning, Ming Lei, Emanuela Sega, Angela Goodenough, Maria N. Jure-Kunkel, Guodong Chen, John S. Sack, Richard Y. Huang, Martin J. Corbett, Joseph E. Myers, Jr., Liang Schweizer, Sandra V. Hatcher, Haichun Huang, Pingping Zhang
  • Publication number: 20180339042
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to glucocorticoid-inducible TNF receptor (GITR). Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Application
    Filed: November 17, 2016
    Publication date: November 29, 2018
    Inventors: Changyu WANG, Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Guodong CHEN, Richard HUANG, Indrani CHAKRABORTY, Haichun HUANG, Susan Chien-Szu WONG, Huiming LI, Bryan C. BARNHART, Aaron P. YAMNIUK, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL
  • Publication number: 20180333502
    Abstract: Provided herein are heavy chain constant regions (referred to as “modified heavy chain constant regions”), or functionally equivalent fragments thereof, that enhance biological properties of antibodies relative to the same antibodies in unmodified form. An exemplary modified heavy chain constant region includes an IgG2 hinge and three constant domains (i.e., CH1, CH2, and CH3 domains), wherein one or more of the constant region domains are of a non-IgG2 isotype (e.g., IgG1, IgG3 or IgG4). The heavy chain constant region may comprise wildtype human IgG domain sequences, or variants of these sequences. Also provided herein are methods for enhancing certain biological properties of antibodies that comprise a non-IgG2 hinge, such as internalization, agonism and antagonism, wherein the method comprises replacing the non-IgG2 hinge of the antibody with an IgG2 hinge.
    Type: Application
    Filed: November 19, 2015
    Publication date: November 22, 2018
    Inventors: Nils LONBERG, Alan J. KORMAN, Mark J. SELBY, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL
  • Patent number: 10100129
    Abstract: The present disclosure provides isolated monoclonal antibodies, particularly human antibodies, that bind to human Cluster of Differentiation 73 (CD73) with high affinity, and inhibit the activity of CD73, and optionally mediate antibody dependent CD73 internalization. Nucleic acid molecules encoding the antibodies of the disclosure, expression vectors, host cells and methods for expressing the antibodies of the disclosure are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the disclosure are also provided. The disclosure also provides methods for inhibiting the growth of a tumor cell expressing CD73 using the antibodies of the disclosure, including methods for treating various cancers.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: October 16, 2018
    Assignee: BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Nils Lonberg, Alan J. Korman, Bryan C. Barnhart, Aaron P. Yamniuk, Mohan Srinivasan, Karla A. Henning, Ming Lei, Emanuela Sega, Angela Goodenough, Maria Jure-Kunkel, Guodong Chen, John S. Sack, Richard Y. Huang, Martin J. Corbett, Joseph E. Myers, Jr., Liang Schweizer, Sandra V. Hatcher, Haichun Huang, Pingping Zhang
  • Publication number: 20180237534
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Application
    Filed: May 26, 2016
    Publication date: August 23, 2018
    Inventors: Zhehong CAI, Indrani CHAKRABORTY, Marie-Michelle Navarro GARCIA, Thomas D. KEMPE, Alan J. KORMAN, Alexander T. KOZHICH, Hadia LEMAR, Mark MAURER, Christina Maria MILBURN, Michael QUIGLEY, Maria RODRIGUEZ, Xiang SHAO, Mohan SRINIVASAN, Brenda L. STEVENS, Kent THUDIUM, Susan Chien-Szu WONG, Jochem GOKEMEIJER, Xi-Tao WANG, Han CHANG, Christine HUANG, Maria JURE-KUNKEL, Zheng YANG, Yan FENG, Patrick GUIRNALDA, Nils LONBERG, Bryan C. BARNHART, Aaron P. YAMNIUK, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL, Praveen AANUR, Mark J. SELBY
  • Publication number: 20180142030
    Abstract: Provided herein are agonistic antibodies, or antigen binding portions thereof, that bind to human CD40. Such antibodies optionally comprise Fc regions with enhanced specificity for Fc?RIIb. The invention also provides methods of treatment of cancer or chronic infection by administering the antibodies of the invention to a subject in need thereof.
    Type: Application
    Filed: June 28, 2016
    Publication date: May 24, 2018
    Inventors: Bryan C. BARNHART, Brigitte DEVAUX, Aaron P. YAMNIUK, Shannon L. OKADA, Brenda L. STEVENS
  • Publication number: 20180127513
    Abstract: The present disclosure provides isolated monoclonal antibodies, particularly human antibodies, that bind to human Cluster of Differentiation 73 (CD73) with high affinity, and inhibit the activity of CD73, and optionally mediate antibody dependent CD73 internalization. Nucleic acid molecules encoding the antibodies of the disclosure, expression vectors, host cells and methods for expressing the antibodies of the disclosure are also provided. Immunoconjugates, bispecific molecules and pharmaceutical compositions comprising the antibodies of the disclosure are also provided. The disclosure also provides methods for inhibiting the growth of a tumor cell expressing CD73 using the antibodies of the disclosure, including methods for treating various cancers.
    Type: Application
    Filed: November 19, 2015
    Publication date: May 10, 2018
    Inventors: Nils LONBERG, Alan J. KORMAN, Bryan C. BARNHART, Aaron P. YAMNIUK, Mohan SRINIVASAN, Karla A. HENNING, Ming LEI, Emanuela SEGA, Angela GOODENOUGH, Maria JURE-KUNKEL, Guodong CHEN, John S. SACK, Richard Y. HUANG, Martin J. CORBETT, Joseph E. MYERS, JR., Liang SCHWEIZER, Sandra V. HATCHER, Haichun HUANG, Pingping ZHANG