Patents by Inventor Aaron R. GARG

Aaron R. GARG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240269653
    Abstract: Catalyst compositions and processes for making and using same. The catalyst composition can include catalyst particles. The catalyst particles can include 0.001 wt % to 6 wt % of Pt and up to 10 wt % of a promoter that can include Sn, Cu, Au, Ag, Ga, or a combination thereof, or a mixture thereof disposed on a support. The support can include at least 0.5 wt % of a Group 2 element. All weight percent values are based on the weight of the support. The catalyst particles can have a median particle size in a range from 10 ?m to 500 pm. The catalyst particles can have an apparent loose bulk density in a range from 0.3 g/cm3 to 2 g/cm3, as measured according to ASTM D7481-18 modified with a 10, 25, or 50 mL graduated cylinder instead of a 100 or 250 mL graduated cylinder.
    Type: Application
    Filed: June 27, 2022
    Publication date: August 15, 2024
    Inventors: Aaron R. Garg, Xiaoying Bao, Colin L. Beswick, Chuansheng Bai, Christian A. Diaz Urrutia
  • Publication number: 20240213540
    Abstract: Described herein are lithium-metal rechargeable electrochemical cells comprising positive single-crystal nickel-manganese-cobalt (NMC)-containing structures and liquid electrolytes comprising one or more imide-containing salts, such as bis(trifluoromethanesulfonyl)imide (TFSI?)-containing salts, bis(fluorosulfonyl)imide (FSI?)-containing salts, and bis(pentafluoroethanesulfonyl)imide (BETI?)-containing salts. These salts can also include various cations, such as lithium (Li+), potassium (K+), sodium (Na+), cesium (Cs+), n-propyl-n-methylpyrrolidinium (Pyr13+), n-octyl-n-methylpyrrolidinium (Pyr18+), and 1-methyl-1-pentylpyrrolidinium (Pyr15+). For example, imide-containing salts can act as a source of lithium ions in lithium-metal salts. In some examples, the liquid electrolyte further comprises one or more of 1,2-dimethoxyethane (DME), 2,2,2-Trifluoroethyl Ether (TFEE), 1,1,2,2-Tetrafluoroethyl 2,2,3,3-tetrafluoropropyl ether (TFPE), one or more phosphites, and one or more phosphates.
    Type: Application
    Filed: December 22, 2023
    Publication date: June 27, 2024
    Applicant: Cuberg, Inc.
    Inventors: Michael McEldrew, Lauren Nicole Burke, Thomas Patrick Whitehill-Nigl, Vicky Thi Huynh, Aaron R. Garg, Sanjay Nanda, Richard Wang
  • Patent number: 11932815
    Abstract: Catalyst systems are provided, along with corresponding methods, for single stage conversion of synthesis gas to fuel boiling range products with increased selectivity for either naphtha production (C5-C9) or distillate production (C10-C20). The increased selectivity for naphtha production or distillate production is provided in conjunction with a reduced selectivity for higher boiling range components (C21+).
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: March 19, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Aaron R. Garg, Lei Zhang, Micaela Taborga Claure, Stuart L. Soled
  • Publication number: 20230019166
    Abstract: Catalyst systems are provided, along with corresponding methods, for single stage conversion of synthesis gas to fuel boiling range products with increased selectivity for either naphtha production (C5-C9) or distillate production (C10-C20). The increased selectivity for naphtha production or distillate production is provided in conjunction with a reduced selectivity for higher boiling range components (C21+).
    Type: Application
    Filed: June 17, 2022
    Publication date: January 19, 2023
    Inventors: Aaron R. GARG, Lei ZHANG, Micaela TABORGA CLAURE, Stuart L. SOLED