Patents by Inventor Aaron Roe

Aaron Roe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12044623
    Abstract: Systems, methods, and techniques for optofluidic analyte detection and analysis using multi-mode interference (MMI) waveguides are disclosed herein. In some embodiments, spatially and spectrally multiplexed optical detection of particles is implemented on an optofluidic platform comprising multiple analyte channels intersecting a single MMI waveguide. In some embodiments, multi-stage photonic structures including a first stage MMI waveguide for demultiplexing optical signals by spatially separating different wavelengths of light from one another may be implemented. In some embodiments, a second stage may use single-mode waveguides and/or MMI waveguides to create multi-spot patterns using the demultiplexed, spatially separated light output from the first stage.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: July 23, 2024
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins, Joshua Wayne Parks
  • Publication number: 20240183844
    Abstract: A disclosed system uses modulations of ionic current across a nanopore in a membrane to detect target molecules passing through the nanopore. This principle has been applied mainly to nucleic acid sequencing, but can also be used to detect other molecular targets such as proteins and small molecules. In addition, the system delivers target molecules to a nanopore to provide label-free single molecule analysis using a chip-based system. Target molecules are concentrated on microscale carrier beads, and the beads are delivered and optically trapped in an area within the capture radius of the nanopore. The target molecules are released from the beads and detected using nanopore current modulation. In addition, the disclosed system combines sample preparation (e.g. purification, extraction, and pre-concentration) with nanopore-based readout on a microfluidic chip.
    Type: Application
    Filed: January 8, 2024
    Publication date: June 6, 2024
    Inventors: Holger Schmidt, Aaron Roe Hawkins, David W. Deamer
  • Patent number: 11913941
    Abstract: A disclosed system uses modulations of ionic current across a nanopore in a membrane to detect target molecules passing through the nanopore. This principle has been applied mainly to nucleic acid sequencing, but can also be used to detect other molecular targets such as proteins and small molecules. In addition, the system delivers target molecules to a nanopore to provide label-free single molecule analysis using a chip-based system. Target molecules are concentrated on microscale carrier beads, and the beads are delivered and optically trapped in an area within the capture radius of the nanopore. The target molecules are released from the beads and detected using nanopore current modulation. In addition, the disclosed system combines sample preparation (e.g. purification, extraction, and pre-concentration) with nanopore-based readout on a microfluidic chip.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: February 27, 2024
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins, David W. Deamer
  • Patent number: 11717828
    Abstract: Spatially distributed optical excitation and integrated waveguides are used for ultrasensitive particle detection based on individual electrokinetic velocities of particles. In some embodiments, chip-integrated systems are used to identify individual particles (e.g., individual molecules) based on their velocity as they move through an optically interrogated channel. Molecular species may be identified and quantified in a fully integrated setting, allowing for particle analysis including molecular analysis that can operate at low copy numbers down to the level of single-cell lysates. In some embodiments, the single-particle velocimetry-based identification and/or separation techniques are applied to various diagnostic assays, including nucleic acids, metabolites, macromolecules, organelles, cell, synthetic markers, small molecules, organic polymers, hormones, peptides, antibodies, lipids, carbohydrates, inorganic and organic microparticles and nanoparticles, whole viruses, and any combination thereof.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: August 8, 2023
    Assignees: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, BRIGHAM YOUNG UNIVERSITY
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Publication number: 20220205912
    Abstract: Systems, methods, and techniques for optofluidic analyte detection and analysis using multi-mode interference (MMI) waveguides are disclosed herein. In some embodiments, spatially and spectrally multiplexed optical detection of particles is implemented on an optofluidic platform comprising multiple analyte channels intersecting a single MMI waveguide. In some embodiments, multi-stage photonic structures including a first stage MMI waveguide for demultiplexing optical signals by spatially separating different wavelengths of light from one another may be implemented. In some embodiments, a second stage may use single-mode waveguides and/or MMI waveguides to create multi-spot patterns using the demultiplexed, spatially separated light output from the first stage.
    Type: Application
    Filed: January 26, 2022
    Publication date: June 30, 2022
    Inventors: Holger Schmidt, Aaron Roe Hawkins, Joshua Wayne Parks
  • Publication number: 20210129147
    Abstract: Spatially distributed optical excitation and integrated waveguides are used for ultrasensitive particle detection based on individual electrokinetic velocities of particles. In some embodiments, chip-integrated systems are used to identify individual particles (e.g., individual molecules) based on their velocity as they move through an optically interrogated channel. Molecular species may be identified and quantified in a fully integrated setting, allowing for particle analysis including molecular analysis that can operate at low copy numbers down to the level of single-cell lysates. In some embodiments, the single-particle velocimetry-based identification and/or separation techniques are applied to various diagnostic assays, including nucleic acids, metabolites, macromolecules, organelles, cell, synthetic markers, small molecules, organic polymers, hormones, peptides, antibodies, lipids, carbohydrates, inorganic and organic microparticles and nanoparticles, whole viruses, and any combination thereof.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 6, 2021
    Inventors: Holger SCHMIDT, Aaron Roe HAWKINS
  • Publication number: 20200284783
    Abstract: A disclosed system uses modulations of ionic current across a nanopore in a membrane to detect target molecules passing through the nanopore. This principle has been applied mainly to nucleic acid sequencing, but can also be used to detect other molecular targets such as proteins and small molecules. In addition, the system delivers target molecules to a nanopore to provide label-free single molecule analysis using a chip-based system. Target molecules are concentrated on microscale carrier beads, and the beads are delivered and optically trapped in an area within the capture radius of the nanopore. The target molecules are released from the beads and detected using nanopore current modulation. In addition, the disclosed system combines sample preparation (e.g. purification, extraction, and pre-concentration) with nanopore-based readout on a microfluidic chip.
    Type: Application
    Filed: October 2, 2018
    Publication date: September 10, 2020
    Inventors: Holger SCHMIDT, Aaron Roe HAWKINS, David W. DEAMER
  • Publication number: 20200011795
    Abstract: Systems, methods, and techniques for optofluidic analyte detection and analysis using multi-mode interference (MMI) waveguides are disclosed herein. In some embodiments, spatially and spectrally multiplexed optical detection of particles is implemented on an optofluidic platform comprising multiple analyte channels intersecting a single MMI waveguide. In some embodiments, multi-stage photonic structures including a first stage MMI waveguide for demultiplexing optical signals by spatially separating different wavelengths of light from one another may be implemented. In some embodiments, a second stage may use single-mode waveguides and/or MMI waveguides to create multi-spot patterns using the demultiplexed, spatially separated light output from the first stage.
    Type: Application
    Filed: February 27, 2018
    Publication date: January 9, 2020
    Inventors: Holger SCHMIDT, Aaron Roe HAWKINS, Joshua Wayne PARKS
  • Patent number: 9618933
    Abstract: System and method for verifying a monitoring and protection system's (MPS) configuration and installation are disclosed. The MPS includes a plurality of input/output (I/O) channels configured to couple to at least one sensor sensing machinery operations, an analog-to-digital converter (ADC) communicatively coupled to the plurality of I/O channels, where the ADC is configured to receive at least one signal from the plurality of I/O channels communicated by the sensor and is configured to convert the signal to a digital data. The MPS also includes a processor communicatively coupled to the ADC, where the processor is configured to derive a state based on the digital data, and an excitation system communicatively coupled to the ADC, where the excitation system is configured to excite an excitation signal for a selected system state as a replacement for the signal.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: April 11, 2017
    Assignee: General Electric Company
    Inventors: Aaron Roe Hampton, Dustin Delany Hess
  • Publication number: 20170087551
    Abstract: An optofluidic platform is constructed so as to comprise a planar, liquid-core integrated optical waveguides for specific detection of nucleic acids. Most preferably, the optical waveguides comprises antiresonant reflecting optical waveguide (ARROWs). A liquid solution can be prepared and introduced into the optofluidic platform for optical excitation. The resulting optical signal can be collected at the edges of the optofluidic platform and can be analyzed to determine the existence of a single and/or a specific nucleic acid.
    Type: Application
    Filed: December 8, 2016
    Publication date: March 30, 2017
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Patent number: 9551667
    Abstract: An optofluidic platform is constructed so as to comprise a planar, liquid-core integrated optical waveguides for specific detection of nucleic acids. Most preferably, the optical waveguides comprises antiresonant reflecting optical waveguide (ARROWs). A liquid solution can be prepared and introduced into the optofluidic platform for optical excitation. The resulting optical signal can be collected at the edges of the optofluidic platform and can be analyzed to determine the existence of a single and/or a specific nucleic acid.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: January 24, 2017
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Patent number: 9372149
    Abstract: An optofluidic platform is constructed to comprise a vertical integration of optical and fluidic layers. The optical layer enables interaction of light with a fluid for a variety of purposes, including particle detection, manipulation, and analysis. The vertical integration allows layers to be permanently or temporarily attached to each other. Temporary attachments provide the advantage of reusing the same optical layer with different fluidic layers. Most preferably, the optical layer comprises antiresonant reflecting optical waveguide. Further, a fluidic layer can be configured to act as an interface between the optical layer and other fluidic layers attached thereon. Moreover, the fluidic layers can be configured to perform fluidic functions. The optofluidic platform can also comprise a protective layer.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: June 21, 2016
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Patent number: 9267891
    Abstract: A chip-scale optical approach to performing multi-target detection is based on molecular biosensing using fiber-optic based fluorescence or light scattering detection in liquid-core waveguides. Multiplexing methods are capable of registering individual nucleic acids and other optically responsive particles, and are ideal for amplification-free detection in combination with the single molecule sensitivity of optofluidic chips. This approach overcomes a critical barrier to introducing a new integrated technology for amplification-free molecular diagnostic detection. Specific examples of liquid-core optical waveguides and multi-mode interferometers are described; however, they can be implemented in a number of different ways as long as a series of excitation spots is created whose spacing varies with the excitation wavelength.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: February 23, 2016
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Publication number: 20150377768
    Abstract: An optofluidic platform is constructed to comprise a vertical integration of optical and fluidic layers. The optical layer enables interaction of light with a fluid for a variety of purposes, including particle detection, manipulation, and analysis. The vertical integration allows layers to be permanently or temporarily attached to each other. Temporary attachments provide the advantage of reusing the same optical layer with different fluidic layers. Most preferably, the optical layer comprises antiresonant reflecting optical waveguide. Further, a fluidic layer can be configured to act as an interface between the optical layer and other fluidic layers attached thereon. Moreover, the fluidic layers can be configured to perform fluidic functions. The optofluidic platform can also comprise a protective layer.
    Type: Application
    Filed: September 3, 2015
    Publication date: December 31, 2015
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Patent number: 9164024
    Abstract: An optofluidic platform is constructed to comprise a vertical integration of optical and fluidic layers. The optical layer enables interaction of light with a fluid for a variety of purposes, including particle detection, manipulation, and analysis. The vertical integration allows layers to be permanently or temporarily attached to each other. Temporary attachments provide the advantage of reusing the same optical layer with different fluidic layers. Most preferably, the optical layer comprises antiresonant reflecting optical waveguide. Further, a fluidic layer can be configured to act as an interface between the optical layer and other fluidic layers attached thereon. Moreover, the fluidic layers can be configured to perform fluidic functions. The optofluidic platform can also comprise a protective layer.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: October 20, 2015
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Publication number: 20150227117
    Abstract: System and method for verifying a monitoring and protection system's (MPS) configuration and installation are disclosed. The MPS includes a plurality of input/output (I/O) channels configured to couple to at least one sensor sensing machinery operations, an analog-to-digital converter (ADC) communicatively coupled to the plurality of I/O channels, where the ADC is configured to receive at least one signal from the plurality of I/O channels communicated by the sensor and is configured to convert the signal to a digital data. The MPS also includes a processor communicatively coupled to the ADC, where the processor is configured to derive a state based on the digital data, and an excitation system communicatively coupled to the ADC, where the excitation system is configured to excite an excitation signal for a selected system state as a replacement for the signal.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 13, 2015
    Applicant: General Electric Company
    Inventors: Aaron Roe Hampton, Dustin Delany Hess
  • Publication number: 20140313510
    Abstract: A chip-scale optical approach to performing multi-target detection is based on molecular biosensing using fiber-optic based fluorescence or light scattering detection in liquid-core waveguides. Multiplexing methods are capable of registering individual nucleic acids and other optically responsive particles, and are ideal for amplification-free detection in combination with the single molecule sensitivity of optofluidic chips. This approach overcomes a critical barrier to introducing a new integrated technology for amplification-free molecular diagnostic detection. Specific examples of liquid-core optical waveguides and multi-mode interferometers are described; however, they can be implemented in a number of different ways as long as a series of excitation spots is created whose spacing varies with the excitation wavelength.
    Type: Application
    Filed: June 4, 2012
    Publication date: October 23, 2014
    Applicants: Brigham Young University, The Regents of the University of California
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Publication number: 20140111800
    Abstract: An optofluidic platform is constructed to comprise a vertical integration of optical and fluidic layers. The optical layer enables interaction of light with a fluid for a variety of purposes, including particle detection, manipulation, and analysis. The vertical integration allows layers to be permanently or temporarily attached to each other. Temporary attachments provide the advantage of reusing the same optical layer with different fluidic layers. Most preferably, the optical layer comprises antiresonant reflecting optical waveguide. Further, a fluidic layer can be configured to act as an interface between the optical layer and other fluidic layers attached thereon. Moreover, the fluidic layers can be configured to perform fluidic functions. The optofluidic platform can also comprise a protective layer.
    Type: Application
    Filed: November 18, 2011
    Publication date: April 24, 2014
    Applicants: BRIGHAM YOUNG UNIVERSITY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Patent number: 8588557
    Abstract: An optical waveguide is provided comprising a non-solid core layer surrounded by a solid-state material, wherein light can be transmitted with low loss through the non-solid core layer. A vapor reservoir is in communication with the optical waveguide. One implementation of the invention employs a monolithically integrated vapor cell, e.g., an alkali vapor cell, using anti-resonant reflecting optical waveguides, or ARROW waveguides, on a substrate.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: November 19, 2013
    Assignees: The Regents of the University of California, Brigham Young University
    Inventors: Holger Schmidt, Aaron Roe Hawkins
  • Publication number: 20130244227
    Abstract: An optofluidic platform is constructed so as to comprise a planar, liquid-core integrated optical waveguides for specific detection of nucleic acids. Most preferably, the optical waveguides comprises antiresonant reflecting optical waveguide (ARROWs). A liquid solution can be prepared and introduced into the optofluidic platform for optical excitation. The resulting optical signal can be collected at the edges of the optofluidic platform and can be analyzed to determine the existence of a single and/or a specific nucleic acid.
    Type: Application
    Filed: November 18, 2011
    Publication date: September 19, 2013
    Applicants: BRIGHAM YOUNG UNIVERSITY, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Holger Schmidt, Aaron Roe Hawkins