Patents by Inventor Aaron Skidmore

Aaron Skidmore has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140190754
    Abstract: A multiple force-measuring device, especially a multiple weighing device has at least two force-measuring modules. Each force-measuring module includes a force-measuring cell and a power delivery means. The power delivery means of at least one of the force-measuring modules in this arrangement is connected, directly or through a junction element, to a control cable that is connected to a power supply unit. The force-measuring modules are connected directly to each other through a module-connection cable that transfers electrical power therebetween.
    Type: Application
    Filed: February 6, 2014
    Publication date: July 10, 2014
    Applicant: Mettler-Toledo AG
    Inventors: Cyrill Bucher, Aaron Skidmore, Douglas Bliss, Markus Uster
  • Patent number: 8648266
    Abstract: A multiple force-measuring device, especially a multiple weighing device has at least two force-measuring modules. Each force-measuring module includes a force-measuring cell and a power delivery means. The power delivery means of at least one of the force-measuring modules in this arrangement is connected, directly or through a junction element, to a control cable that is connected to a power supply unit. The force-measuring modules are connected directly to each other through a module-connection cable that transfers electrical power therebetween.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: February 11, 2014
    Assignee: Mettler-Toledo AG
    Inventors: Cyrill Bucher, Aaron Skidmore, Douglas Bliss, Markus Uster
  • Patent number: 8191434
    Abstract: A device and method for effectuating the temperature compensation testing of digital load cells. The device uses conductive heat transfer to establish and maintain the temperature of the load cell(s) during testing. The device may include a vessel into which one or more load cells to be tested are placed. Temperature control of the load cells may be accomplished by circulating a temperature controlled fluid through the vessel. The vessel containing the one or more load cells may then be placed in a load application device that applies a load(s) to the one or more load cells during testing. Readings from the one or more load cells are used to establish a temperature compensation factor for each load cell tested. In other embodiments, temperature control of the load cells may be accomplished by placing the load cells in contact with a solid heat transfer element(s).
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: June 5, 2012
    Assignee: Mettler-Toledo, LLC
    Inventors: Daniel Reber, Urs Loher, Aaron Skidmore
  • Patent number: 8035042
    Abstract: A coupling device designed to securely connect adjacent weigh platform modules of a vehicle scale. Such a device may include corresponding coupling elements, each adapted for attachment to a respective one of a pair of adjacent weigh platform modules. The coupling elements are designed for mating contact and include fastener assembly receiving cavity sections that, when the coupling elements are properly mated, form a fastener assembly receiving cavity in an exposed top surface of the coupling device. A fastener assembly is located in the fastener assembly receiving cavity and is operative to secure the mated arrangement of the coupling elements, thereby rigidly connecting the associated weigh platform modules. The accessible location of the fastener assembly facilitates both installation and subsequent service/repair procedures.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: October 11, 2011
    Assignee: Mettler-Toledo, Inc.
    Inventors: Jeff Budic, Aaron Skidmore
  • Publication number: 20100251833
    Abstract: A device and method for effectuating the temperature compensation testing of digital load cells. The device uses conductive heat transfer to establish and maintain the temperature of the load cell(s) during testing. The device may include a vessel into which one or more load cells to be tested are placed. Temperature control of the load cells may be accomplished by circulating a temperature controlled fluid through the vessel. The vessel containing the one or more load cells may then be placed in a load application device that applies a load(s) to the one or more load cells during testing. Readings from the one or more load cells are used to establish a temperature compensation factor for each load cell tested. In other embodiments, temperature control of the load cells may be accomplished by placing the load cells in contact with a solid heat transfer element(s).
    Type: Application
    Filed: April 3, 2009
    Publication date: October 7, 2010
    Applicant: Mettler-Toledo, Inc.
    Inventors: Daniel Reber, Urs Loher, Aaron Skidmore
  • Publication number: 20100243338
    Abstract: A coupling device designed to securely connect adjacent weigh platform modules of a vehicle scale. Such a device may include corresponding coupling elements, each adapted for attachment to a respective one of a pair of adjacent weigh platform modules. The coupling elements are designed for mating contact and include fastener assembly receiving cavity sections that, when the coupling elements are properly mated, form a fastener assembly receiving cavity in an exposed top surface of the coupling device. A fastener assembly is located in the fastener assembly receiving cavity and is operative to secure the mated arrangement of the coupling elements, thereby rigidly connecting the associated weigh platform modules. The accessible location of the fastener assembly facilitates both installation and subsequent service/repair procedures.
    Type: Application
    Filed: March 25, 2009
    Publication date: September 30, 2010
    Applicant: Mettler-Toledo, Inc.
    Inventors: Jeff Budic, Aaron Skidmore
  • Publication number: 20100084199
    Abstract: A multiple force-measuring device, especially a multiple weighing device has at least two force-measuring modules. Each force-measuring module includes a force-measuring cell and a power delivery means. The power delivery means of at least one of the force-measuring modules in this arrangement is connected, directly or through a junction element, to a control cable that is connected to a power supply unit. The force-measuring modules are connected directly to each other through a module-connection cable that transfers electrical power therebetween.
    Type: Application
    Filed: December 7, 2009
    Publication date: April 8, 2010
    Applicant: Mettler-Toledo AG
    Inventors: Cyrill Bucher, Aaron Skidmore, Douglas Bliss, Markus Uster