Patents by Inventor Abbas Razavi

Abbas Razavi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070254801
    Abstract: Catalyst systems and methods of forming the same are described herein. The catalyst system may be formed by contacting an alumina-silica support composition with ammonium bifluoride in the presence of water to form a first fluorinated support composition. The method then includes heating the first fluorinated support composition in an oxygen containing atmosphere to a temperature of from about 200° C. to about 600° C. to form a second fluorinated support composition, wherein the second fluorinated support composition includes a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof and then contacting the second fluorinated support composition with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: September 29, 2006
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez, Michel Daumerie
  • Publication number: 20070255021
    Abstract: Supported catalyst systems, methods of forming the supported catalyst systems and polymerization processes including the supported catalyst systems are described herein. The methods generally include providing an inorganic support composition, wherein the inorganic support composition comprises aluminum, fluorine and silica and contacting the inorganic support composition with a transition metal compound to form a supported catalyst system, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to the transition metal valency.
    Type: Application
    Filed: April 26, 2007
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Vladimir Marin, Margarito Lopez, Abbas Razavi, Tim Coffy
  • Publication number: 20070255026
    Abstract: Catalyst systems, polymers and methods of forming the same are described herein. The catalyst systems generally include an inorganic support material having a bonding sequence selected from Si—O—Al—F, F—Si—O—Al, F—Si—O—Al—F and combinations thereof, wherein the inorganic support material has an acid strength (pKa) of less than about 4.8 and a transition metal compound, wherein the transition metal compound is represented by the formula [L]mM[A]n; wherein L is a bulky ligand, A is a leaving group, M is a transition metal and m and n are such that a total ligand valency corresponds to a transition metal valency.
    Type: Application
    Filed: March 7, 2007
    Publication date: November 1, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20070213485
    Abstract: The present invention discloses a method for preparing a supported catalyst component comprising the steps of: a) providing a halogenated bisimine precursor component of formula (I); b) reacting the halogenated bisimine precursor with an ionic liquid precursor in a solvent to prepare an ionic liquid; c) reacting the ionic liquid prepared in step b) with a metallic complex of formula (II) L2MY2; wherein L is a labile ligand, M is a metal selected from Ni or Pd and Y is a halogen; d) retrieving a single site catalyst component dissolved in an ionic liquid. It also discloses an active catalyst system dissolved in an ionic liquid and its use in the polymerisation of olefins.
    Type: Application
    Filed: September 23, 2004
    Publication date: September 13, 2007
    Inventors: Olivier Lavastre, Fabien Bonnette, Abbas Razavi
  • Patent number: 7250478
    Abstract: The present invention refers to a metallocene catalyst component for producing polyolefins according to formula (I) R?s (CpRn)g (CpRn) M Q3-g (I) or according to formula (II) R?(CpRn)MeXQ (II) wherein—each Cp is a substituted or unsubstituted cyclopentadienyl ring with the bridge-head position of at least one of the cyclopentadienyl rings being occupied by a silicon atom;—each R is the same or different and is hydrogen or a hydrocarbyl radical such as alkyl, alkenyl, aryl, alkylaryl or arylalkyl radical containing from 1 to 20 carbon atoms or two carbon atoms are joined together to form a C4-C6 ring; —R? is a structural bridge between two Cp rings;—M is a group IIIB, IVB, VB or VIB metal;—Q is a hydrocarbyl radical such as aryl, alkyl, alkenyl, alkylaryl or arylalkyl radical having from 1 to 20 carbon atoms, a hydrocarboxy radical having from 1 to 20 carbon atoms or a halogen and can be the same or different from each other;—s is 0 or 1, g is 0, 1 or 2 and s is 0 when g is 0, n is 4 when s is 1 and n is 5 whe
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: July 31, 2007
    Assignee: TOTAL Petrochemicals Research Feluy
    Inventor: Abbas Razavi
  • Patent number: 7241849
    Abstract: The present invention discloses a metallocene catalyst component of formula (Flu-R?-Cp)M(?3-C3R?5)(ether)n (I) wherein Cp is a cyclopentadienyl, substituted or unsubstituted, Flu is a fluorenyl, substituted or unsubstitutted, R? is a structural bridge between Cp and Flu imparting stereorigidity to the component, M is a metal Group III of the Periodic Table, each R? is the same or different and is hydrogen or a hydrocarbyl having from 1 to 20 carbon atoms and n is 0, 1 or 2. It further discloses a process for preparing said catalyst component and its used in the controlled polymerisation of polar or non polar monomers.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: July 10, 2007
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Jean-François Carpentier, Evgueni Kirillov, Abbas Razavi
  • Publication number: 20070155619
    Abstract: The invention discloses a method for making a hydrogenated metallocene catalyst component comprising the steps of: 1. Providing a compound comprising at least one aromatic group; 2. Hydrogenating the at least one aromatic group in the presence of hydrogen and a hydrogenation catalyst to form a hydrogenated compound; and 3. Forming a metallocene catalyst component from the hydrogenated compound from step 2.
    Type: Application
    Filed: March 2, 2004
    Publication date: July 5, 2007
    Inventor: Abbas Razavi
  • Publication number: 20070155621
    Abstract: The present invention discloses a method for preparing a dissolved catalyst component comprising the steps of: a) providing a halogenated precursor component of formula (I) X—[CH2—]— b) reacting the halogenated bisimine precursor with an ionic liquid precursor in a solvent to prepare an ionic liquid; c) mixing in a solvent one equivalent of the ionic liquid prepared in step b) with a metallic complex of formula (II) L2MY2 wherein L is a coordinating ligand for the metallic site, said coordination being achieved by phosphorus, nitrogen or oxygen; d) evaporating the solvent; and e) retrieving a hybrid single site catalyst component/ionic liquid system. It also discloses an active catalyst system heterogenised by an ionic liquid and its use in the polymerisation of olefins.
    Type: Application
    Filed: November 5, 2004
    Publication date: July 5, 2007
    Inventors: Olivier Lavastre, Fabien Bonnette, Abbas Razavi
  • Publication number: 20070155620
    Abstract: The present invention discloses a method for preparing a catalyst component suitable for the preparation of bimodal polymers that comprises the steps of a) providing hollow beads of polyethylene of controlled morphology and size; b) drying the hollow beads under vacuum; c) impregnating the dried hollow beads with a concentrated solution of the desired catalyst component under vacuum; d) submitting the impregnated hollow beads to atmospheric pressure; e) draining excess liquid; f) drying under inert gas at atmospheric pressure. It also discloses a method for preparing bimodal polymers that uses the new catalyst component catalyst.
    Type: Application
    Filed: September 23, 2004
    Publication date: July 5, 2007
    Inventors: Olivier Lavastre, Laurent Gallard, Abbas Razavi
  • Publication number: 20070142219
    Abstract: The present invention discloses a method for making a supported olefin polymerisation catalyst, including the steps of: (a) forming a solid support comprising a metal adsorbent having a chiral adsorbate adsorbed to the surface thereof; whereby the presence of the chiral adsorbate favours the formation of chiral or pro chiral crystal faces of the solid support crystal lattice and; (b) immobilising a catalyst or pre-catalyst thereof on the chiral or pro-chiral crystal faces, and optionally activating the pre-catalyst, to form a supported olefin polymerisation catalyst.
    Type: Application
    Filed: August 26, 2004
    Publication date: June 21, 2007
    Inventor: Abbas Razavi
  • Publication number: 20070142578
    Abstract: Olefin polymerization processes are described herein. In one embodiment, the process generally includes introducing propylene monomer to a reaction zone, disposing an isospecific metallocene catalyst within the reaction zone, wherein the isospecific metallocene catalyst has the formula: (SiRA2)(CpRB4)(FluRC8)MAn wherein Si is silicon and is a structural bridge between Cp and Flu, Cp is a cyclopentadienyl group, Flu is a fluorenyl group, M is a transition metal, A is a leaving group, n is an integer equal to the valence of M minus 2, RA is independently selected from hydrogen, alkyls, aromatics and combinations thereof, RB is independently selected from hydrogen, alkyls and combinations thereof and RC is independently selected from hydrogen, alkyls, aromatics and combinations thereof, contacting the propylene monomer with the isospecific metallocene catalyst to form isotactic polypropylene and recovering the isotactic polypropylene from the reaction zone.
    Type: Application
    Filed: December 16, 2005
    Publication date: June 21, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Vladimir Marin, Abbas Razavi
  • Publication number: 20070117713
    Abstract: A process for the preparation of a tridentate transition metal catalyst components incorporating pyridinyl bis-amino or monoamino ligand structures which do not require ? bonding of the transition metal through the use of cyclopentadienyl rings. The ligand structure incorporates a heteroatom group that involves nitrogen in one organogroup and either oxygen or nitrogen in another organogroup. The process of preparing the catalyst component involves the reaction of a bis-amino or oxyamino pyridenyl ligand compound with an organo transition metal compound involving a tetrabenzyl ligand or other functional group ligands linked to a transition metal such as titanium zirconium or hafnium.
    Type: Application
    Filed: June 14, 2006
    Publication date: May 24, 2007
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Publication number: 20070117943
    Abstract: In accordance with the present invention, there is provided a transition metal olefin polymerization catalyst component characterized by the formula: where, M is a Group IV or a Group IV transition metal, B is a bridge group containing at least two carbon atoms, A? and A? are organogroups, each containing a heteroatom selected from the group consisting of oxygen, sulfur, nitrogen and phosphorus, X is selected from the group consisting of chlorine, bromine, iodine, a C1-C20 alkyl group, a C6-C30 aromatic group and mixtures thereof, and n is 1, 2 or 3. The invention also encompasses a method for the polymerization of an ethylenically unsaturated monomer which comprises contacting a transition metal catalyst component as characterized by formula (1) above and an activating co-catalyst component in a polymerization reaction zone with an ethylenically unsaturated monomer under polymerization conditions to produce a polymer product.
    Type: Application
    Filed: November 21, 2005
    Publication date: May 24, 2007
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Publication number: 20070093623
    Abstract: Catalyst compositions having Cs symmetry and processes utilizing Cs symmetric catalyst components for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Monomers, which are polymerized or copolymerized include ethylene, C3+ alpha olefins and substituted vinyl compounds, such as styrene and vinyl chloride. The catalyst component is characterized by the formula: wherein M is a Group 4-11 transition metal, n is an integer of from 1-3, Q is halogen or a C1-C2 alkyl group, PY is a pyridinyl group, R? and R? are each C1-C20 hydrocarbyl group, A1 is a mononuclear aromatic group, and A2 is a polynuclear aromatic group, such as a terphenyl group. The catalyst component is used with an activating co-catalyst component such as an alumoxane. Also disclosed is a process for the preparation of a pyridinyl-linked bis-amino ligand suitable for use in forming the catalyst component.
    Type: Application
    Filed: December 13, 2006
    Publication date: April 26, 2007
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Publication number: 20070073013
    Abstract: The invention provides a method for the production of a non-linear polyolefin, which method comprises: (a) providing a polyolefin having a ratio of internal to terminal double bonds of at least 1:1 and; (b) forming a non-linear polyolefin from the polyolefin provided in step (a).
    Type: Application
    Filed: July 6, 2004
    Publication date: March 29, 2007
    Inventors: Abbas Razavi, Vincenzo Busico, Roberta Cipullo
  • Publication number: 20070060726
    Abstract: Provided is a method for the production of an olefin co-polymer, which method comprises co-polymerising two or more olefin monomers in the presence of a metallocene catalyst, wherein the metallocene catalyst comprises a metallocene having the following formula: R?(CpRm)(FluR?n)MQ2 wherein Cp comprises a cyclopentadienyl ring; Flu comprises a fluorenyl ring; R? comprises a structural bridge imparting stereorigidity to the component; each R is the same or different and is an organic group; m is an integer of from 1-4; each R? is the same or different and is an organic group; n is an integer of from 0-8; M is a metal atom from group IVB of the Periodic Table or is vanadium; and each Q is a hydrocarbon having from 1-20 carbon atoms or is a halogen.
    Type: Application
    Filed: June 28, 2004
    Publication date: March 15, 2007
    Inventor: Abbas Razavi
  • Publication number: 20070043184
    Abstract: Bidentate catalyst systems and the methods or forming such are described herein. The catalyst systems generally are compounds having the general formula: where R, R1, R2 and R3 are optional and independently selected from hydrogen, C1 to C20 alkyl groups or C6 to C20 aryl groups, A? and A? are independently selected from coordination groups, M is a Group 4 or 5 transition metal, X is selected from halogens, alkyl groups, aromatic groups or combinations thereof and n is less than 4.
    Type: Application
    Filed: August 18, 2005
    Publication date: February 22, 2007
    Applicant: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir Marin, Margarito Lopez
  • Publication number: 20070043183
    Abstract: Catalyst compositions and processes for the polymerization of ethylenically unsaturated monomers to produce polymers, including copolymers or homopolymers. Such monomers include ethylene, C3+ alpha olefins and substituted vinyl compounds, such as styrene and vinyl chloride. The polymerization catalyst characterized by the formula B(FluL)MQn in which Flu is a fluorenyl group substituted at at least the 2,7- and 3,6-positions by hydrocarbyl groups, preferably relatively bulky hydrocarbyl groups.
    Type: Application
    Filed: August 17, 2005
    Publication date: February 22, 2007
    Inventors: Vladimir Marin, Abbas Razavi
  • Patent number: 7176950
    Abstract: A process for the preparation of a pyridinyl-linked bis-amino ligand that comprises, (a) reacting 2,6-dibromophenyl amine with an arylboronic acid component which is substituted or unsubstituted to produce a 2,6-diarylphenyl amine which is substituted or unsubstituted; (b) reacting the 2,6-diarylphenyl amine with a 2,6-dialkanoic pyridine characterized by the formula: wherein R? and R? are each independently a C1–C20 hydrocarbyl group; to produce a mono-imine ligand characterized by the formula: wherein TRP is a terphenyl group which is substituted or unsubstituted; and (c) reacting the mono-imine ligand with an aniline which may be substituted or unsubstituted to produce a bis-amine ligand characterized by the structure: wherein: TRP is a substituted or unsubstituted terphenyl group; and AR is a substituted or unsubstituted aryl group.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: February 13, 2007
    Assignee: Fina Technology, Inc.
    Inventors: Abbas Razavi, Vladimir P. Marin, Margarito Lopez
  • Publication number: 20070032629
    Abstract: The present invention discloses a method for supporting a transition metal complex and the resulting supported catalyst component which is characterised in that the metallic sites are kept away from one another and kept away from the surface of the support.
    Type: Application
    Filed: July 27, 2006
    Publication date: February 8, 2007
    Inventors: Phillipe Banet, Daniel Brunel, Francois Fajula, Dan Lerner, Abbas Razavi