Patents by Inventor Abbas Shiri

Abbas Shiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11476378
    Abstract: A visibly transparent planar structure using a CPA scheme to boost the absorption of a multi-layer thin-film configuration, requiring no surface patterning, to overcome the intrinsic absorption limitation of the absorbing material. This is achieved in a multi-layer absorbing Fabry-Perot (FP) cavity, namely a thin-film amorphous silicon solar cell. Omni-resonance is achieved across a bandwidth of 80 nm in the near-infrared (NIR), thus increasing the effective absorption of the material, without modifying the material itself, enhancing it beyond its intrinsic absorption over a considerable spectral range. The apparatus achieved an increased external quantum efficiency (EQE) of 90% of the photocurrent generated in the 80 nm NIR region from 660 to 740 nm as compared to a bare solar cell. over the spectral range of interest.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: October 18, 2022
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Ayman F. Abouraddy, Massimo Maximilian L. Villinger, Abbas Shiri, Soroush Shabahang, Ali K. Jahromi, Chris H. Villinger
  • Publication number: 20210280732
    Abstract: A visibly transparent planar structure using a CPA scheme to boost the absorption of a multi-layer thin-film configuration, requiring no surface patterning, to overcome the intrinsic absorption limitation of the absorbing material. This is achieved in a multi-layer absorbing Fabry-Perot (FP) cavity, namely a thin-film amorphous silicon solar cell. Omni-resonance is achieved across a bandwidth of 80 nm in the near-infrared (NIR), thus increasing the effective absorption of the material, without modifying the material itself, enhancing it beyond its intrinsic absorption over a considerable spectral range. The apparatus achieved an increased external quantum efficiency (EQE) of 90% of the photocurrent generated in the 80 nm NIR region from 660 to 740 nm as compared to a bare solar cell. over the spectral range of interest.
    Type: Application
    Filed: May 4, 2020
    Publication date: September 9, 2021
    Inventors: Ayman F. Abouraddy, Massimo Maximilian L. Villinger, Abbas Shiri, Soroush Shabahang, Ali K. Jahromi, Chris H. Villinger