Patents by Inventor Abbas Sohrabpour

Abbas Sohrabpour has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210346096
    Abstract: Disclosed herein are methods and apparatus for the imaging of brain electrical activity from electromagnetic measurements, using deep learning neural networks where a simulation process is designed to model realistic brain activation and electromagnetic signals to train generalizable neural networks and a residual convolutional neural network and/or a recurrent neural network is trained using the simulated data, capable of estimating source distributions from electromagnetic measurements, and their temporal dynamics over time, for pathological signals in diseased brains, such as interictal activity and ictal signals, and physiological brain signals such as evoked brain responses and spontaneous brain activity.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 11, 2021
    Inventors: Bin HE, Rui SUN, Abbas SOHRABPOUR
  • Patent number: 10945622
    Abstract: Three-dimensional electrical source imaging of electrical activity in a biological system (e.g., brain or heart) may involve sensor array recording, at multiple locations, of signals (e.g. electrical or magnetic signals) of electrical activity. An initial estimate of an underlying source is obtained. Edge sparsity is imposed on the estimated electrical activity to eliminate background activity and create clear edges between an active source and background activity. The initial estimate is iteratively reweighted and a series of subsequent optimization problems launched to converge to a more accurate estimation of the underlying source. Images depicting a spatial distribution of a source are generated based on the iteratively reweighted edge sparsity, and the time-course of activity for estimated sources generated. Iterative reweighting penalizes locations with smaller source amplitude based on solutions obtained in previous iterations, and continues until a desirable solution is obtained with clear edges.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: March 16, 2021
    Assignee: Regents of the University of Minnesota
    Inventors: Abbas Sohrabpour, Bin He
  • Publication number: 20180055394
    Abstract: Three-dimensional electrical source imaging of electrical activity in a biological system (e.g., brain or heart) may involve sensor array recording, at multiple locations, of signals (e.g. electrical or magnetic signals) of electrical activity. An initial estimate of an underlying source is obtained. Edge sparsity is imposed on the estimated electrical activity to eliminate background activity and create clear edges between an active source and background activity. The initial estimate is iteratively reweighted and a series of subsequent optimization problems launched to converge to a more accurate estimation of the underlying source. Images depicting a spatial distribution of a source are generated based on the iteratively reweighted edge sparsity, and the time-course of activity for estimated sources generated. Iterative reweighting penalizes locations with smaller source amplitude based on solutions obtained in previous iterations, and continues until a desirable solution is obtained with clear edges.
    Type: Application
    Filed: August 23, 2017
    Publication date: March 1, 2018
    Inventors: Abbas Sohrabpour, Bin He