Patents by Inventor Abdelkader Hilmi

Abdelkader Hilmi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240072287
    Abstract: Molten carbonate fuel cell structures are provided that include a structural mesh support layer at the interface between the surface of the cathode and the cathode current collector. The structural mesh layer can have a mesh open area of 25% to 45%. In addition to providing structural support, the structural mesh layer can reduce or minimize ohmic resistance at the interface between the cathode and the cathode current collector.
    Type: Application
    Filed: August 3, 2023
    Publication date: February 29, 2024
    Inventors: Abdelkader HILMI, Chao-Yi YUH, Timothy C. GEARY, Aaron SATTLER, William C. HORN, William A. LAMBERTI, Gabor KISS
  • Publication number: 20240039011
    Abstract: A method of manufacturing a current collector for an electrochemical cell assembly includes providing a base plate including a surface, bend-forming the base plate to create a plurality of open corrugations protruding from the surface, each open corrugation including a first flange and a second flange, and forming a foot between the first flange and the second flange of each open corrugation to close each open corrugation and form a corrugation.
    Type: Application
    Filed: July 27, 2023
    Publication date: February 1, 2024
    Inventors: Thomas M. LUCAS, Ramakrishnan VENKATARAMAN, Abdelkader HILMI, Chao-Yi YUH
  • Patent number: 11888187
    Abstract: Molten carbonate fuel cells (MCFCs) are operated to provide enhanced CO2 utilization. This can increase the effective amount of carbonate ion transport that is achieved. The enhanced CO2 utilization is enabled in part by operating an MCFC under conditions that cause transport of alternative ions across the electrolyte. The amount of alternative ion transport that occurs during enhanced CO2 utilization can be mitigated by using a more acidic electrolyte.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: January 30, 2024
    Assignees: ExxonMobil Technology and Engineering Company, FuelCell Energy, Inc.
    Inventors: Abdelkader Hilmi, Timothy A. Barckholtz, Jonathan Rosen, Heather A. Elsen, Gabor Kiss, Carl A. Willman, Chao-Yi Yuh, Hossein Ghezel-Ayagh, Timothy C. Geary
  • Patent number: 11888199
    Abstract: An elevated target amount of electrolyte is used to initially fill a molten carbonate fuel cell that is operated under carbon capture conditions. The increased target electrolyte fill level can be achieved in part by adding additional electrolyte to the cathode collector prior to start of operation. The increased target electrolyte fill level can provide improved fuel cell performance and lifetime when operating a molten carbonate fuel cell at high current density with a low-CO2 content cathode input stream and/or when operating a molten carbonate fuel cell at high CO2 utilization.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: January 30, 2024
    Assignees: ExxonMobil Technology and Engineering Company, FUELCELL ENERGY, INC.
    Inventors: Jonathan Rosen, Heather A. Elsen, Gabor Kiss, William A. Lamberti, William C. Horn, Anding Zhang, Timothy C. Geary, Adam Franco, Abdelkader Hilmi
  • Publication number: 20230246215
    Abstract: Systems and methods are provided for improving the operation of molten carbonate fuel cells that include cathode current collector structures that have reduced contact area with the cathode in order to create increased cathode open surface area. Molten carbonate fuel cells that have cathode collectors with reduced contact area with the cathode can have an increased tendency to suffer structural difficulties during operation, such as formation of gaps between electrolyte and one or both electrodes. Use of a sintered anode in such a fuel cell can reduce or minimize the impact of such structural difficulties. The sintered anode can provide higher pore volume and/or a more stable pore structure and/or increased structural stability in a fuel cell that includes a cathode collector that has a reduced contact area with the cathode. This can maintain a more stable interface between the cathode and electrolyte and/or between the anode and the electrolyte.
    Type: Application
    Filed: January 23, 2023
    Publication date: August 3, 2023
    Inventors: Jonathan S. ROSEN, Gabor KISS, Timothy A. BARCKHOLTZ, Lu HAN, William A. LAMBERTI, William C. HORN, Abdelkader HILMI, Timothy C. GEARY, Carl A. WILLMAN, Adam W. FRANCO
  • Patent number: 11695122
    Abstract: A layered cathode structure for a molten carbonate fuel cell is provided, along with methods of forming a layered cathode and operating a fuel cell including a layered cathode. The layered cathode can include at least a first cathode layer and a second cathode layer. The first cathode layer can correspond to a layer that is adjacent to the molten carbonate electrolyte during operation, while the second cathode layer can correspond to a layer that is adjacent to the cathode collector of the fuel cell. The first cathode layer can be formed by sintering a layer that includes a conventional precursor material for forming a cathode, such as nickel particles. The second cathode layer can be formed by sintering a layer that includes a mixture of particles of a conventional precursor material and 1.0 vol % to 30 vol % of particles of a lithium pore-forming compound.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: July 4, 2023
    Assignees: ExxonMobil Technology and Engineering Company, FUELCELL ENERGY, INC.
    Inventors: Abdelkader Hilmi, Gabor Kiss, Rodrigo F. Blanco Gutierrez, Timothy C. Geary, Ethan L. Demeter, Chao-Yi Yuh
  • Patent number: 11495819
    Abstract: A molten carbonate fuel cell assembly includes a cathode electrode; an anode electrode; an electrolyte matrix disposed between the cathode electrode and the anode electrode; a cathode current collector abutting the cathode electrode; and a first electrolyte composition stored in the cathode electrode, the first electrolyte composition comprising a first mixture of a eutectic Li/Na carbonate electrolyte doped with one or more additive materials, wherein the one or more additive materials comprise one or more of SrO, BaCO3, BaO, SrCO3, and combinations thereof.
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: November 8, 2022
    Assignee: FuelCell Energy, Inc.
    Inventors: Abdelkader Hilmi, Ethan Demeter
  • Patent number: 11431016
    Abstract: A binder solution for an electrolyte matrix for use with molten carbonate fuel cells is provided. The binder solution includes a first polymer with a molecular weight of less than about 150,000 and a second binder with a molecular weight of greater than about 200,000. The binder solution produces an electrolyte matrix with improved flexibility, matrix particle packing density, strength, and pore structure.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: August 30, 2022
    Assignee: FuelCell Energy, Inc.
    Inventors: Arun Surendranath, Abdelkader Hilmi, Chao-Yi Yuh
  • Publication number: 20220173421
    Abstract: An elevated target amount of electrolyte is used to initially fill a molten carbonate fuel cell that is operated under carbon capture conditions. The increased target electrolyte fill level can be achieved in part by adding additional electrolyte to the cathode collector prior to start of operation. The increased target electrolyte fill level can provide improved fuel cell performance and lifetime when operating a molten carbonate fuel cell at high current density with a low-CO2 content cathode input stream and/or when operating a molten carbonate fuel cell at high CO2 utilization.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 2, 2022
    Inventors: Jonathan Rosen, Heather A. Elsen, Gabor Kiss, William A. Lamberti, William C. Horn, Anding Zhang, Timothy C. Geary, Adam Franco, Abdelkader Hilmi
  • Patent number: 11335937
    Abstract: An elevated target amount of electrolyte is used to initially fill a molten carbonate fuel cell that is operated under carbon capture conditions. The increased target electrolyte fill level can be achieved in part by adding additional electrolyte to the cathode collector prior to start of operation. The increased target electrolyte fill level can provide improved fuel cell performance and lifetime when operating a molten carbonate fuel cell at high current density with a low-CO2 content cathode input stream and/or when operating a molten carbonate fuel cell at high CO2 utilization.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: May 17, 2022
    Assignees: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY, FUELCELL ENERGY, INC.
    Inventors: Jonathan Rosen, Heather A. Elsen, Gabor Kiss, William A. Lamberti, William C. Horn, Anding Zhang, Timothy C. Geary, Adam Franco, Abdelkader Hilmi
  • Patent number: 11205795
    Abstract: A reinforced electrolyte matrix for a molten carbonate fuel cell includes a porous ceramic matrix, a molten carbonate salt provided in the porous ceramic matrix, and at least one reinforcing structure comprised of at least one of yttrium, zirconium, cerium or oxides thereof. The reinforcing structure does not react with the molten carbonate salt. The reinforced electrolyte matrix separates a porous anode and a porous cathode in the molten carbonate fuel cell.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: December 21, 2021
    Assignee: FuelCell Energy, Inc.
    Inventors: Arun Surendranath, Abdelkader Hilmi, Chao-Yi Yuh
  • Publication number: 20210159531
    Abstract: An elevated target amount of electrolyte is used to initially fill a molten carbonate fuel cell that is operated under carbon capture conditions. The increased target electrolyte fill level can be achieved in part by adding additional electrolyte to the cathode collector prior to start of operation. The increased target electrolyte fill level can provide improved fuel cell performance and lifetime when operating a molten carbonate fuel cell at high current density with a low-CO2 content cathode input stream and/or when operating a molten carbonate fuel cell at high CO2 utilization.
    Type: Application
    Filed: November 26, 2019
    Publication date: May 27, 2021
    Inventors: Jonathan Rosen, Heather A. Elsen, Gabor Kiss, William A. Lamberti, William C. Horn, Anding Zhang, Timothy C. Geary, Adam Franco, Abdelkader Hilmi
  • Publication number: 20210143462
    Abstract: A motive machine can be selectively operable in a plurality of functional modes. The motive machine can include a drive wheel a steering assembly (610), and a controller (604). The drive wheel can be rotatably secured to a body of the motive machine. The steering assembly (610) can be operable to steer the motive machine. The controller (604) can be in communication with a steering sensor (606), a steering motor, and a limit sensor (608, where the controller (604) can be configured to synchronize the steering motor to the steering sensor (606) as a function of a limit signal.
    Type: Application
    Filed: June 21, 2017
    Publication date: May 13, 2021
    Inventors: Abdelkader HILMI, Ethan DEMETER
  • Patent number: 10957918
    Abstract: A method of making an electrolyte matrix includes: preparing a slurry comprising a support material, a coarsening inhibitor, an electrolyte material, and a solvent; and drying the slurry to form an electrolyte matrix. The support material comprises lithium aluminate, the coarsening inhibitor comprises a material selected from the group consisting of MnO2, Mn2O3, TiO2, ZrO2, Fe2O3, LiFe2O3, and mixtures thereof, and the coarsening inhibitor has a particle size of about 0.005 ?m to about 0.5 ?m.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: March 23, 2021
    Assignee: FuelCell Energy, Inc.
    Inventors: Abdelkader Hilmi, Arun Surendranath, Chao-Yi Yuh, Mohammad Farooque
  • Publication number: 20200358111
    Abstract: A method of making an electrolyte matrix includes: preparing a slurry comprising a support material, a coarsening inhibitor, an electrolyte material, and a solvent; and drying the slurry to form an electrolyte matrix. The support material comprises lithium aluminate, the coarsening inhibitor comprises a material selected from the group consisting of MnO2, Mn2O3, TiO2, ZrO2, Fe2O3, LiFe2O3, and mixtures thereof, and the coarsening inhibitor has a particle size of about 0.005 ?m to about 0.5 ?m.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: Abdelkader HILMI, Arun SURENDRANATH, Chao-Yi YUH, Mohammad FAROOQUE
  • Patent number: 10756358
    Abstract: An electrolyte matrix for use with molten carbonate fuel cells having an enhanced stability and lifetime is provided. The electrolyte matrix includes lithium aluminate as a support material and a coarsening inhibitor. The coarsening inhibitor may be in the form of discrete particles or a dopant present in the support material. The coarsening inhibitor may include MnO2, Mn2O3, TiO2, ZrO2, Fe2O3, LiFe2O3, or mixtures thereof. The coarsening inhibitor prevents the formation of large pores in the electrolyte matrix during operation of the fuel cell, increasing the performance and the service lifetime of the electrolyte matrix.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: August 25, 2020
    Assignee: FuelCell Energy, Inc.
    Inventors: Abdelkader Hilmi, Arun Surendranath, Chao-Yi Yuh, Mohammad Farooque
  • Publication number: 20200176789
    Abstract: Molten carbonate fuel cells (MCFCs) are operated to provide enhanced CO2 utilization. This can increase the effective amount of carbonate ion transport that is achieved. The enhanced CO2 utilization is enabled in part by operating an MCFC under conditions that cause transport of alternative ions across the electrolyte. The amount of alternative ion transport that occurs during enhanced CO2 utilization can be mitigated by using a more acidic electrolyte.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Inventors: Abdelkader Hilmi, Timothy A. Barckholtz, Jonathan Rosen, Heather A. Elsen, Gabor Kiss, Carl A. Willman, Chao-Yi Yuh, Hossein Ghezel-Ayagh, Timothy C. Geary
  • Publication number: 20200176784
    Abstract: A layered cathode structure for a molten carbonate fuel cell is provided, along with methods of forming a layered cathode and operating a fuel cell including a layered cathode. The layered cathode can include at least a first cathode layer and a second cathode layer. The first cathode layer can correspond to a layer that is adjacent to the molten carbonate electrolyte during operation, while the second cathode layer can correspond to a layer that is adjacent to the cathode collector of the fuel cell. The first cathode layer can be formed by sintering a layer that includes a conventional precursor material for forming a cathode, such as nickel particles. The second cathode layer can be formed by sintering a layer that includes a mixture of particles of a conventional precursor material and 1.0 vol % to 30 vol % of particles of a lithium pore-forming compound.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Inventors: Abdelkader Hilmi, Gabor Kiss, Rodrigo F. Blanco Gutierrez, Timothy C. Geary, Ethan L. Demeter, Chao-Yi Yuh
  • Publication number: 20200176787
    Abstract: Molten carbonate fuel cell configurations are provided that include one or more baffle structures within the cathode gas collection volume. The baffle structures can reduce the unblocked flow cross-section of the cathode gas collection volume by 10% to 80%. It has been discovered that when operating a molten carbonate fuel cell under conditions for elevated CO2 utilization, the presence of baffles can provide an unexpected benefit in the form of providing increased transference and/or increased operating voltage.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Inventors: Timothy C. Geary, Timothy A. Barckholtz, Jonathan Rosen, Sandipan K. Das, Carl A. Willman, Abdelkader Hilmi, Chao-Yi Yuh
  • Publication number: 20200176783
    Abstract: Cathode collector structures and/or corresponding cathode structures are provided that can allow for improved operation for a molten carbonate fuel cell when operated under conditions for elevated CO2 utilization. A cathode collector structure that provides an increased open area at the cathode surface can reduce or minimize the amount of alternative ion transport that occurs within the fuel cell. Additionally or alternately, grooves in the cathode surface can be used to increase the open area.
    Type: Application
    Filed: November 26, 2019
    Publication date: June 4, 2020
    Inventors: Jonathan Rosen, Timothy A. Barckholtz, Heather A. Elsen, Gabor Kiss, Lu Han, Thomas M. Smith, Sandipan K. Das, Chao-Yi Yuh, Carl A. Willman, Timothy C. Geary, Keith E. Davis, Abdelkader Hilmi, Lawrence J. Novacco