Patents by Inventor Abdelrahman Ahmed

Abdelrahman Ahmed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11841268
    Abstract: Aspects relate to a compact material analyzer including a light source, a detector, and a module including a first optical window on a first side of the module, a second optical window on a second side of the module opposite the first side, and a light modulator. The light source produces input light at a high power that is passed through the first optical window to the light modulator. The light modulator is configured to attenuate the input light, produce modulated light based on the input light, and direct the modulated light through the second optical window to the sample. The modulated light produced by the light modulator is at a lower power safe for the sample. The detector is configured to receive output light from the sample produced from interaction with the modulated light through the second optical window and to detect a spectrum of the output light.
    Type: Grant
    Filed: February 1, 2022
    Date of Patent: December 12, 2023
    Assignee: SI-WARE SYSTEMS
    Inventors: Yasser M. Sabry, Bassem A. Mortada, Khaled Hassan, Abdelrahman Ahmed Maher Mohamed Elsayed Salem, Diaa Khalil, Mohamed H. Al Haron, Mohammed Ahmed Elsheikh, Ahmed Shebl, Bassam Saadany, Mostafa Medhat, Botros George Iskander Shenouda
  • Patent number: 11599005
    Abstract: A multi-section optical modulator and related method are disclosed wherein two waveguide arms traverse a plurality of successive modulating sections. A differential drive signal is applied separately to each waveguide arm of each modulating sections in synchronism with the transmission of light along the waveguide arms, effecting a dual differential driving of each section. By suitably selecting the number of modulating sections and the section length, a high modulation bandwidth and a high modulation efficiency may be achieved simultaneously for a given peak-to-peak voltage swing of the drive signal.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 7, 2023
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Christopher Williams, Mostafa Ahmed, Alexander Rylyakov, Richard C. Younce, Yang Liu, Ran Ding, Abdelrahman Ahmed
  • Publication number: 20220244101
    Abstract: Aspects relate to a compact material analyzer including a light source, a detector, and a module including a first optical window on a first side of the module, a second optical window on a second side of the module opposite the first side, and a light modulator. The light source produces input light at a high power that is passed through the first optical window to the light modulator. The light modulator is configured to attenuate the input light, produce modulated light based on the input light, and direct the modulated light through the second optical window to the sample. The modulated light produced by the light modulator is at a lower power safe for the sample. The detector is configured to receive output light from the sample produced from interaction with the modulated light through the second optical window and to detect a spectrum of the output light.
    Type: Application
    Filed: February 1, 2022
    Publication date: August 4, 2022
    Inventors: Yasser M. Sabry, Bassem A. Mortada, Khaled Hassan, Abdelrahman Ahmed Maher Mohamed Elsayed Salem, Diaa Khalil, Mohamed H. Al Haron, Mohammed Ahmed Elsheikh, Ahmed Shebl, Bassam Saadany, Mostafa Medhat, Botros George Iskander Shenouda
  • Patent number: 11309845
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's with reconfigurable feedback resistors, which are adjustable based on the level of power, e.g. current, generated by the photodetector, and variable load resistors, which are adjustable based on the change in impedance caused by the change in the feedback resistor.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: April 19, 2022
    Assignee: Nokia Solutions and Networks Oy
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Publication number: 20210373409
    Abstract: A multi-section optical modulator and related method are disclosed wherein two waveguide arms traverse a plurality of successive modulating sections. A differential drive signal is applied separately to each waveguide arm of each modulating sections in synchronism with the transmission of light along the waveguide arms, affecting a dual differential driving of each section. By suitably selecting the number of modulating sections and the section length, a high modulation bandwidth and a high modulation efficiency may be achieved simultaneously for a given peak-to-peak voltage swing of the drive signal.
    Type: Application
    Filed: August 9, 2021
    Publication date: December 2, 2021
    Inventors: Christopher Williams, Mostafa Ahmed, Alexander Rylyakov, Richard C. Younce, Yang Liu, Ran Ding, Abdelrahman Ahmed
  • Patent number: 11086188
    Abstract: A multi-section optical modulator and related method are disclosed wherein two waveguide arms traverse a plurality of successive modulating sections. A differential drive signal is applied separately to each waveguide arm of each modulating sections in synchronism with the transmission of light along the waveguide arms, affecting a dual differential driving of each section. By suitably selecting the number of modulating sections and the section length, a high modulation bandwidth and a high modulation efficiency may be achieved simultaneously for a given peak-to-peak voltage swing of the drive signal.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: August 10, 2021
    Assignee: Nokia Solutions & Networks Oy
    Inventors: Christopher Williams, Mostafa Ahmed, Alexander Rylyakov, Richard C. Younce, Yang Liu, Ran Ding, Abdelrahman Ahmed
  • Patent number: 10958230
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's and VGA's with reconfigurable sizes, which are adjustable based on the level of power, e.g. current, generated by the photodetector.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: March 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Patent number: 10955691
    Abstract: Within a modulator driver, different blocks are employed, e.g. a buffer, one or more variable gain amplifiers (VGA), and a final driver stage. Each of these blocks has an optimum bias point for best performance; however, interconnecting the blocks requires sharing the DC bias points in their interface, which does not necessarily match the optimum performance bias point of each block. Accordingly, a first offset feedback loop extending from reference points after a selected one of the blocks to an input of one of the blocks. The first offset feedback loop includes current sources capable of delivering a variable current to the input of the selected block in order to compensate any offset in an amplified differential input electrical signal measured at the reference points. A first bias feedback loop is also provided, including a current sinker for subtracting excess current introduced in the first offset compensation feedback loop.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: March 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Daihyun Lim, Alexander Rylyakov
  • Patent number: 10931381
    Abstract: In optical receivers, cancelling the DC component of the incoming current is a key to increasing the receiver's effectiveness, and therefore increase the channel capacity. Ideally, the receiver includes a DC cancellation circuit for removing the DC component; however, in differential receivers an offset may be created between the output voltage components caused by the various amplifiers. Accordingly, an offset cancellation circuit is required to determine the offset and to modify the DC cancellation circuit accordingly.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: February 23, 2021
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Publication number: 20200393706
    Abstract: Within a modulator driver, different blocks are employed, e.g. a buffer, one or more variable gain amplifiers (VGA), and a final driver stage. Each of these blocks has an optimum bias point for best performance; however, interconnecting the blocks requires sharing the DC bias points in their interface, which does not necessarily match the optimum performance bias point of each block.. Accordingly, a first offset feedback loop extending from reference points after a selected one of the blocks to an input of one of the blocks. The first offset feedback loop includes current sources capable of delivering a variable current to the input of the selected block in order to compensate any offset in an amplified differential input electrical signal measured at the reference points. A first bias feedback loop is also provided, including a current sinker for subtracting excess current introduced in the first offset compensation feedback loop.
    Type: Application
    Filed: June 13, 2019
    Publication date: December 17, 2020
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Daihyun Lim, Alexander Rylyakov
  • Patent number: 10862716
    Abstract: An optical coherent receiver includes an optical hybrid (OH) configured to mix signal and reference light, and two back-end optical ports. An optical equalizing network interconnects two 180° OH output ports with the two back-end optical ports so that each back-end optical port receives light from each of the two OH output ports. Optical signals from each of the two back-end optical ports are converted to electrical signals that are fed to a differential amplifier. Adjusting coupling ratios and/or optical delays in the optical equalizing network reduces an OSNR penalty of a lower-bandwidth differential amplifier.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: December 8, 2020
    Assignee: Elenion Technologies, Inc.
    Inventors: Abdelrahman Ahmed, Ruizhi Shi, Alexander Rylyakov, Richard C. Younce
  • Publication number: 20200235705
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's with reconfigurable feedback resistors, which are adjustable based on the level of power, e.g. current, generated by the photodetector, and variable load resistors, which are adjustable based on the change in impedance caused by the change in the feedback resistor.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 23, 2020
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Publication number: 20200235820
    Abstract: In optical receivers, cancelling the DC component of the incoming current is a key to increasing the receiver's effectiveness, and therefore increase the channel capacity. Ideally, the receiver includes a DC cancellation circuit for removing the DC component; however, in differential receivers an offset may be created between the output voltage components caused by the various amplifiers. Accordingly, an offset cancellation circuit is required to determine the offset and to modify the DC cancellation circuit accordingly.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 23, 2020
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Publication number: 20200142274
    Abstract: A multi-section optical modulator and related method are disclosed wherein two waveguide arms traverse a plurality of successive modulating sections. A differential drive signal is applied separately to each waveguide arm of each modulating sections in synchronism with the transmission of light along the waveguide arms, affecting a dual differential driving of each section. By suitably selecting the number of modulating sections and the section length, a high modulation bandwidth and a high modulation efficiency may be achieved simultaneously for a given peak-to-peak voltage swing of the drive signal.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Inventors: Christopher Williams, Mostafa Ahmed, Alexander Rylyakov, Richard C. Younce, Yang Liu, Ran Ding, Abdelrahman Ahmed
  • Patent number: 10644805
    Abstract: In optical receivers, cancelling the DC component of the incoming current is a key to increasing the receiver's effectiveness, and therefore increase the channel capacity. Ideally, the receiver includes a DC cancellation circuit for removing the DC component; however, in differential receivers an offset may be created between the output voltage components caused by the various amplifiers. Accordingly, an offset cancellation circuit is required to determine the offset and to modify the DC cancellation circuit accordingly.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: May 5, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Patent number: 10644652
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's with reconfigurable feedback resistors, which are adjustable based on the level of power, e.g. current, generated by the photodetector, and variable load resistors, which are adjustable based on the change in impedance caused by the change in the feedback resistor.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: May 5, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Publication number: 20200092010
    Abstract: In optical receivers, cancelling the DC component of the incoming current is a key to increasing the receiver's effectiveness, and therefore increase the channel capacity. Ideally, the receiver includes a DC cancellation circuit for removing the DC component; however, in differential receivers an offset may be created between the output voltage components caused by the various amplifiers. Accordingly, an offset cancellation circuit is required to determine the offset and to modify the DC cancellation circuit accordingly.
    Type: Application
    Filed: October 29, 2019
    Publication date: March 19, 2020
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Publication number: 20200083855
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's and VGA's with reconfigurable sizes, which are adjustable based on the level of power, e.g. current, generated by the photodetector.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 12, 2020
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Publication number: 20200083846
    Abstract: In optical receivers, extending the transimpedance amplifier's (TIA) dynamic range is a key to increasing the receiver's dynamic range, and therefore increase the channel capacity. Ideally, the TIA requires controllable gain, whereby the receiver can modify the characteristics of the TIA and/or the VGA to process high power incoming signals with a defined maximum distortion, and low power incoming signals with a defined maximum noise. A solution to the problem is to provide TIA's with reconfigurable feedback resistors, which are adjustable based on the level of power, e.g. current, generated by the photodetector, and variable load resistors, which are adjustable based on the change in impedance caused by the change in the feedback resistor.
    Type: Application
    Filed: September 10, 2018
    Publication date: March 12, 2020
    Inventors: Ariel Leonardo Vera Villarroel, Abdelrahman Ahmed, Alexander Rylyakov
  • Patent number: 10558104
    Abstract: A multi-section optical modulator and related method wherein two waveguide arms traverse a plurality of successive modulating sections. A differential drive signal is applied separately to each waveguide arm of each modulating sections in synchronism with the transmission of light along the waveguide arms, effecting a dual differential driving of each section. By suitably selecting the number of modulating sections and the section length, a high modulation bandwidth and a high modulation efficiency may be achieved simultaneously for a given peak-to-peak voltage swing of the drive signal.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: February 11, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Christopher Williams, Mostafa Ahmed, Alexander Rylyakov, Richard C. Younce, Yang Liu, Ran Ding, Abdelrahman Ahmed