Patents by Inventor Abdulhadi Baykal

Abdulhadi Baykal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250100937
    Abstract: A ceramic composite material includes Barium titanate (BaTiO3) and CoFe1.98Nb0.02O4. The BaTiO3 is present in an amount of 1 to 99 percent by weight based on the total weight of the BaTiO3 and the CoFe1.98Nb0.02O4. The CoFe1.98Nb0.02O4 is present in an amount of 1 to 99 percent by weight based on the total weight of the BaTiO3 and the CoFe1.98Nb0.02O4. These composite products may be suitable for high-frequency electromagnetic device applications.
    Type: Application
    Filed: September 27, 2023
    Publication date: March 27, 2025
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah A. ALMESSIERE, Essia HANNACHI, Abdulhadi BAYKAL
  • Publication number: 20250099942
    Abstract: A photocatalytic nanoparticle composition includes titanium dioxide nanoparticles doped with cerium and samarium. The titanium dioxide nanoparticles have a tetragonal anatase crystal phase. The cerium and the samarium are each present in the titanium dioxide nanoparticles in an amount of 0.1 to 0.5% by weight based on a total weight of the titanium dioxide nanoparticles. The titanium dioxide nanoparticles have an average crystallite size of 15 to 16 nanometers (nm); and an average particle diameter of 21 to 23 nm. The photocatalytic nanoparticle composition used for dye degradation.
    Type: Application
    Filed: September 27, 2023
    Publication date: March 27, 2025
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah A. ALMESSIERE, Essia HANNACHI, Abdulhadi BAYKAL
  • Publication number: 20250069788
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1-xBxRyFe2-yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Application
    Filed: November 8, 2024
    Publication date: February 27, 2025
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Abdulhadi BAYKAL
  • Patent number: 12227429
    Abstract: Methods of forming spinel ferrite nanoparticles containing a chromium-substituted copper ferrite as well as properties (e.g. particle size, crystallite size, pore size, surface area) of these spinel ferrite nanoparticles are described. Methods of preventing or reducing microbe growth on a surface by applying these spinel ferrite nanoparticles onto the surface in the form of a suspension or an antimicrobial product are also described.
    Type: Grant
    Filed: April 18, 2024
    Date of Patent: February 18, 2025
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Mohammad Azam Ansari, Abdulhadi Baykal
  • Publication number: 20250037946
    Abstract: A nanocomposite electrode and supercapacitor thereof are disclosed. The nanocomposite electrode includes a substrate, at least one binding compound, at least one carbonaceous compound, and vanadium doped spinel ferrite nanoparticles (V-SFNPs). The V-SFNPs have a formula of CoxNi1-xVyFe2-yOz, wherein x=0.1-0.9, y=0.01-0.10, and z=3-5. The substrate is at least partially coated on a first side with a mixture comprising the V-SFNPs, the at least one binding compound, and the at least one carbonaceous compound. Two of the nanocomposite electrodes are combined to form the supercapacitor.
    Type: Application
    Filed: October 11, 2024
    Publication date: January 30, 2025
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Emre CEVIK, Munerah Abdullah ALMESSIERE, Abdulhadi BAYKAL, Ayhan BOZKURT
  • Publication number: 20250022666
    Abstract: A nanocomposite electrode and supercapacitor thereof are disclosed. The nanocomposite electrode includes a substrate, at least one binding compound, at least one carbonaceous compound, and vanadium doped spinel ferrite nanoparticles (V-SFNPs). The V-SFNPs have a formula of CoxNi1-xVyFe2-yOz, wherein x=0.1-0.9, y=0.01-0.10, and z=3-5. The substrate is at least partially coated on a first side with a mixture comprising the V-SFNPs, the at least one binding compound, and the at least one carbonaceous compound. Two of the nanocomposite electrodes are combined to form the supercapacitor.
    Type: Application
    Filed: September 26, 2024
    Publication date: January 16, 2025
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Emre CEVIK, Munerah Abdullah ALMESSIERE, Abdulhadi BAYKAL, Ayhan BOZKURT
  • Publication number: 20250022640
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1-xBxRyFe2-yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Application
    Filed: October 1, 2024
    Publication date: January 16, 2025
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Abdulhadi BAYKAL
  • Patent number: 12183494
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: August 1, 2024
    Date of Patent: December 31, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Publication number: 20240395444
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1-xBxRyFe2-yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Application
    Filed: August 1, 2024
    Publication date: November 28, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Abdulhadi BAYKAL
  • Publication number: 20240387117
    Abstract: A nanocomposite electrode and supercapacitor thereof are disclosed. The nanocomposite electrode includes a substrate, at least one binding compound, at least one carbonaceous compound, and vanadium doped spinel ferrite nanoparticles (V-SFNPs). The V-SFNPs have a formula of CoxNi1-xVyFe2-yOz, wherein x=0.1-0.9, y=0.01-0.10, and z=3-5. The substrate is at least partially coated on a first side with a mixture comprising the V-SFNPs, the at least one binding compound, and the at least one carbonaceous compound. Two of the nanocomposite electrodes are combined to form the supercapacitor.
    Type: Application
    Filed: July 30, 2024
    Publication date: November 21, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Emre CEVIK, Munerah Abdullah ALMESSIERE, Abdulhadi BAYKAL, Ayhan BOZKURT
  • Patent number: 12148567
    Abstract: A nanocomposite electrode and supercapacitor thereof are disclosed. The nanocomposite electrode includes a substrate, at least one binding compound, at least one carbonaceous compound, and vanadium doped spinel ferrite nanoparticles (V-SFNPs). The V-SFNPs have a formula of CoxNi1-xVyFe2-yOz, wherein x=0.1-0.9, y=0.01-0.10, and z=3-5. The substrate is at least partially coated on a first side with a mixture comprising the V-SFNPs, the at least one binding compound, and the at least one carbonaceous compound. Two of the nanocomposite electrodes are combined to form the supercapacitor.
    Type: Grant
    Filed: July 30, 2024
    Date of Patent: November 19, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Emre Cevik, Munerah Abdullah Almessiere, Abdulhadi Baykal, Ayhan Bozkurt
  • Patent number: 12136516
    Abstract: A nanocomposite electrode and supercapacitor thereof are disclosed. The nanocomposite electrode includes a substrate, at least one binding compound, at least one carbonaceous compound, and vanadium doped spinel ferrite nanoparticles (V-SFNPs). The V-SFNPs have a formula of CoxNi1-xVyFe2-yOz, wherein x=0.1-0.9, y=0.01-0.10, and z=3-5. The substrate is at least partially coated on a first side with a mixture comprising the V-SFNPs, the at least one binding compound, and the at least one carbonaceous compound. Two of the nanocomposite electrodes are combined to form the supercapacitor.
    Type: Grant
    Filed: June 13, 2024
    Date of Patent: November 5, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Emre Cevik, Munerah Abdullah Almessiere, Abdulhadi Baykal, Ayhan Bozkurt
  • Patent number: 12131852
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1-xBxRyFe2-yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: November 28, 2023
    Date of Patent: October 29, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Publication number: 20240331954
    Abstract: A nanocomposite electrode and supercapacitor thereof are disclosed. The nanocomposite electrode includes a substrate, at least one binding compound, at least one carbonaceous compound, and vanadium doped spinel ferrite nanoparticles (V-SFNPs). The V-SFNPs have a formula of CoxNi1-xVyFe2-yOz, wherein x=0.1-0.9, y=0.01-0.10, and z=3-5. The substrate is at least partially coated on a first side with a mixture comprising the V-SFNPs, the at least one binding compound, and the at least one carbonaceous compound. Two of the nanocomposite electrodes are combined to form the supercapacitor.
    Type: Application
    Filed: June 13, 2024
    Publication date: October 3, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Emre CEVIK, Munerah Abdullah ALMESSIERE, Abdulhadi BAYKAL, Ayhan BOZKURT
  • Patent number: 12106902
    Abstract: A nanocomposite electrode and supercapacitor thereof are disclosed. The nanocomposite electrode includes a substrate, at least one binding compound, at least one carbonaceous compound, and vanadium doped spinel ferrite nanoparticles (V-SFNPs). The V-SFNPs have a formula of CoxNi1-xVyFe2-yOz, wherein x=0.1-0.9, y=0.01-0.10, and z=3-5. The substrate is at least partially coated on a first side with a mixture comprising the V-SFNPs, the at least one binding compound, and the at least one carbonaceous compound. Two of the nanocomposite electrodes are combined to form the supercapacitor.
    Type: Grant
    Filed: April 24, 2024
    Date of Patent: October 1, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Emre Cevik, Munerah Abdullah Almessiere, Abdulhadi Baykal, Ayhan Bozkurt
  • Patent number: 12100538
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Grant
    Filed: July 13, 2023
    Date of Patent: September 24, 2024
    Assignee: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine Slimani, Munirah Abdullah Almessiere, Abdulhadi Baykal
  • Publication number: 20240307853
    Abstract: A method of degrading a dye in an aqueous solution including contacting nanoparticles with the dye in the aqueous solution and irradiating the aqueous solution. The nanoparticles have a formula of Zn1-2xCexYbxO, x=0.01-0.1, and where at least 90 wt. % of the dye is degraded during the irradiating of the aqueous solution.
    Type: Application
    Filed: March 16, 2023
    Publication date: September 19, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Essia HANNACHI, Yassine SLIMANI, Muhammad NAWAZ, Munirah A. ALMESSIERE, Abdulhadi BAYKAL
  • Publication number: 20240286919
    Abstract: Methods of forming spinel ferrite nanoparticles containing a chromium-substituted copper ferrite as well as properties (e.g. particle size, crystallite size, pore size, surface area) of these spinel ferrite nanoparticles are described. Methods of preventing or reducing microbe growth on a surface by applying these spinel ferrite nanoparticles onto the surface in the form of a suspension or an antimicrobial product are also described.
    Type: Application
    Filed: April 18, 2024
    Publication date: August 29, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Mohammad Azam ANSARI, Abdulhadi BAYKAL
  • Publication number: 20240274371
    Abstract: A nanocomposite electrode and supercapacitor thereof are disclosed. The nanocomposite electrode includes a substrate, at least one binding compound, at least one carbonaceous compound, and vanadium doped spinel ferrite nanoparticles (V-SFNPs). The V-SFNPs have a formula of CoxNi1-xVyFe2-yOz, wherein x=0.1-0.9, y=0.01-0.10, and z=3-5. The substrate is at least partially coated on a first side with a mixture comprising the V-SFNPs, the at least one binding compound, and the at least one carbonaceous compound. Two of the nanocomposite electrodes are combined to form the supercapacitor.
    Type: Application
    Filed: April 24, 2024
    Publication date: August 15, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Emre CEVIK, Munerah Abdullah ALMESSIERE, Abdulhadi BAYKAL, Ayhan BOZKURT
  • Publication number: 20240242865
    Abstract: A magnetoelectric multiferroic nanocomposite. The nanocomposite comprises a ferroelectric perovskite oxide and a rare-earth substituted mixed ternary transition metal ferrite of the formula A1?xBxRyFe2?yO4. The nanocomposite has a high dielectric constant, low dielectric loss, both stable over a wide frequency range. These properties may make the nanocomposite desirable for applications in microelectronic devices, sensors and antennas.
    Type: Application
    Filed: July 13, 2023
    Publication date: July 18, 2024
    Applicant: Imam Abdulrahman Bin Faisal University
    Inventors: Yassine SLIMANI, Munirah Abdullah ALMESSIERE, Abdulhadi BAYKAL