Patents by Inventor Abdullah Al-Malki

Abdullah Al-Malki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230383201
    Abstract: Compounds for inhibiting corrosion are provided that include a pyridinium substituent and a hydroxy substituent. Also provided are methods of making the compounds. Also provided are corrosion inhibitor formulations including the compounds. Also provided are processes for inhibiting corrosion of a metallic surface using the corrosion inhibitor formulations.
    Type: Application
    Filed: May 17, 2023
    Publication date: November 30, 2023
    Applicant: Saudi Arabian Oil Company
    Inventors: Muhammad Imran Ul-haq, Nayef M. Alanazi, Turki M. Al Abeedi, Abdullah Al-Malki, Faisal M. Al-Mutahhar
  • Publication number: 20230365815
    Abstract: According to embodiments disclosed herein, a corrosion-resistant substrate may comprise a substrate comprising a first surface and a corrosion-resistant film positioned on at least a portion of the first surface of the substrate. A method of producing a corrosion-resistant substrate may comprise contacting at least a portion of a first surface of a substrate with a corrosion inhibitor solution and drying the corrosion inhibitor solution to produce the corrosion-resistant film on the substrate, wherein at least a portion of the solvent may be expelled from the corrosion inhibitor solution during the drying to form the corrosion-resistant film, such that the corrosion-resistant film is solid. The corrosion inhibitor solution and the corrosion-resistant film may comprise a bis-quaternized ammonium compound.
    Type: Application
    Filed: May 11, 2022
    Publication date: November 16, 2023
    Applicant: Saudi Arabian Oil Company
    Inventors: Muhammad Imran Ul-haq, Nayef M. Alanazi, Turki M. Al Abeedi, Abdullah Al-Malki
  • Publication number: 20230348658
    Abstract: Gas hydrate inhibiting compositions include random polymers prepared from polyacrylates. The random polymers include at least one acrylate ester monomer in combination with at least one amine functional monomer. Methods for synthesizing the gas hydrate inhibiting polymers include polymerization of an acrylate then post-modifying a polyacrylate with an amine from at least one amine compound. Methods for inhibiting formation of clathrate hydrates in a natural gas pipeline include adding the gas hydrate inhibiting polymers to a natural gas pipeline.
    Type: Application
    Filed: April 29, 2022
    Publication date: November 2, 2023
    Applicant: Saudi Arabian Oil Company
    Inventors: Muhammad Imran Ul-haq, Abdullah Al-Malki, Hassan Ali Al-Ajwad, Taras Y. Makogon
  • Publication number: 20230340343
    Abstract: Compounds for inhibiting corrosion are provided that include a pyridinium substituent and a hydroxy substituent. Also provided are methods of making the compounds. Also provided are corrosion inhibitor formulations including the compounds. Also provided are processes for inhibiting corrosion of a metallic surface using the corrosion inhibitor formulations.
    Type: Application
    Filed: April 25, 2022
    Publication date: October 26, 2023
    Applicant: Saudi Arabian Oil Company
    Inventors: Muhammad Imran Ul-haq, Nayef M. Alanazi, Turki M. Al Abeedi, Abdullah Al-Malki, Faisal M. Al-Mutahhar
  • Patent number: 11753492
    Abstract: A corrosion inhibiting polymer is provided.
    Type: Grant
    Filed: May 20, 2022
    Date of Patent: September 12, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Imran Ul-Haq, Abdullah Al-Malki, Manal Al-Eid, Hassan Ali Al-Ajwad
  • Publication number: 20220275128
    Abstract: A corrosion inhibiting polymer is provided.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 1, 2022
    Inventors: Imran Ul-Haq, Abdullah Al-Malki, Manal Al-Eid, Hassan Ali Al-Ajwad
  • Patent number: 11421326
    Abstract: In accordance with one or more embodiments of the present disclosure, a process for preventing corrosion of a metallic surface of a pipeline includes contacting the metallic surface with a corrosion inhibitor. The corrosion inhibitor comprises a polymer of formula R—O—(POL)-Z. R is a straight or branched alkyl or aryl; POL is a polyglycerol based polymer; Z is a non-ionic amine, a cyclic amine having 5 to 8 atoms, a diamine, a triamine, a tetra-amine, a polymeric amine, a thiol, a disulfide, or —NH—R1—SH; and R1 is a hydrocarbyl. The corrosion inhibitor is also disclosed.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: August 23, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Muhammad Imran Ul-haq, Abdullah Al-Malki, Donya A. Alsewdan, Nayef M. Alanazi
  • Patent number: 11384176
    Abstract: Embodiments of the present disclosure are directed to a method of making a reaction inhibiting polymer having a formula of M—CO—NR. The method may comprise reacting PAA with an organic coupling reagent and at least one alicyclic amine to produce the reaction inhibiting polymer. In accordance with another embodiment of the present disclosure, a method of making an acryloyl monomer having a formula of Ra—CO—NR may comprise reacting an acrylic acid with an organic coupling reagent and an alicyclic amine to form the acryloyl monomer. Ra may be an alkylene moiety, M may be a poly(acrylic) acid backbone. NR may be an alicyclic amine moiety coupled to the polymer backbone or coupled to the alkylene moiety.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: July 12, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Imran Ul-haq, Abdullah Al-Malki, Manal Al-Eid, Donya A. Alsewdan
  • Publication number: 20210403617
    Abstract: Embodiments of the present disclosure are directed to a method of making a reaction inhibiting polymer having a formula of M—CO—NR. The method may comprise reacting PAA with an organic coupling reagent and at least one alicyclic amine to produce the reaction inhibiting polymer. In accordance with another embodiment of the present disclosure, a method of making an acryloyl monomer having a formula of Ra—CO—NR may comprise reacting an acrylic acid with an organic coupling reagent and an alicyclic amine to form the acryloyl monomer. Ra may be an alkylene moiety, M may be a poly(acrylic) acid backbone. NR may be an alicyclic amine moiety coupled to the polymer backbone or coupled to the alkylene moiety.
    Type: Application
    Filed: June 26, 2020
    Publication date: December 30, 2021
    Inventors: Imran Ul-haq, Abdullah Al-Malki, Manal Al-Eid, Donya A. Alsewdan
  • Publication number: 20210395898
    Abstract: In accordance with one or more embodiments of the present disclosure, a process for preventing corrosion of a metallic surface of a pipeline includes contacting the metallic surface with a corrosion inhibitor. The corrosion inhibitor comprises a polymer of formula R—O—(POL)—Z. R is a straight or branched alkyl or aryl; POL is a polyglycerol based polymer; Z is a non-ionic amine, a cyclic amine having 5 to 8 atoms, a diamine, a triamine, a tetra-amine, a polymeric amine, a thiol, a disulfide, or —NH—R1—SH; and R1 is a hydrocarbyl. The corrosion inhibitor is also disclosed.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Muhammad Imran Ul-haq, Abdullah Al-Malki, Donya A. Alsewdan, Nayef M. Alanazi
  • Patent number: 11060042
    Abstract: Copolymers having General Formula (I): in which R1 is chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combinations thereof, where: the divalent C4-C7 heteroaliphatic groups include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 is two; x is a molar fraction range chosen from 0.05 to 0.95; and y is a molar fraction range chosen from 0.05 to 0.95, where the summation of x and y equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates. The methods include contacting the fluid with at least one copolymer of General Formula (I) under conditions suitable for forming the clathrate hydrates.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: July 13, 2021
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Hassan Al-Ajwad, Mohammed Al-Daous, Shaikh Asrof Ali
  • Patent number: 11059926
    Abstract: Copolymers having General Formula (I): in which R1 and R3 are chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combinations thereof, where the divalent C4-C7 heteroaliphatic groups of R1 and R3 include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 or R3 is two, R2 is chosen from Q1 and Q2, x is a molar fraction range chosen from 0.1 to 0.9, y is a molar fraction range chosen from 0.1 to 0.9, and z is a molar fraction range chosen from 0 to 0.8, where the summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with at least one copolymer of General Formula (I).
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 13, 2021
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Abdullah Al-Malki, Manal Al-Eid, Mohammed Al-Daous, Shaikh Asrof Ali, Khalid Majnouni
  • Publication number: 20210171687
    Abstract: A corrosion inhibiting polymer is provided. The corrosion inhibiting polymer has a general formula of.
    Type: Application
    Filed: December 9, 2019
    Publication date: June 10, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Imran Ul-Haq, Abdullah Al-Malki, Manal Al-Eid, Hassan Ali Al-Ajwad
  • Publication number: 20200148828
    Abstract: Copolymers having General Formula (I): in which R1 is chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combinations thereof, where: the divalent C4-C7 heteroaliphatic groups include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 is two; x is a molar fraction range chosen from 0.05 to 0.95; and y is a molar fraction range chosen from 0.05 to 0.95, where the summation of x and y equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates. The methods include contacting the fluid with at least one copolymer of General Formula (I) under conditions suitable for forming the clathrate hydrates.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 14, 2020
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Hassan Al-Ajwad, Mohammed Al-Daous, Shaikh Asrof Ali
  • Publication number: 20200115484
    Abstract: Copolymers having General Formula (I): in which R1 and R3 are chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combination thereof, where the divalent C4-C7 heteroaliphatic groups of R1 and R3 include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 or R3 is two, R2 is chosen from Q1 and Q2, x is a molar fraction range chosen from 0.1 to 0.9, y is a molar fraction range chosen from 0.1 to 0.9, and z is a molar fraction range chosen from 0 to 0.8, where the summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with at least one copolymer of General Formula (I).
    Type: Application
    Filed: December 11, 2019
    Publication date: April 16, 2020
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Abdullah Al-Malki, Manal Al-Eid, Mohammed Al-Daous, Shaikh Asrof Ali, Khalid Majnouni
  • Patent number: 10550215
    Abstract: Copolymers having General Formula (I): in which R1 and R3 are chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combination thereof, where the divalent C4-C7 heteroaliphatic groups of R1 and R3 include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 or R3 is two, R2 is chosen from Q1 and Q2, x is a molar fraction range chosen from 0.1 to 0.9, y is a molar fraction range chosen from 0.1 to 0.9, and z is a molar fraction range chosen from 0 to 0.8, where the summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with at least one copolymer of General Formula (I).
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: February 4, 2020
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Abdullah Al-Malki, Manal Al-Eid, Mohammed Al-Daous, Shaikh Asrof Ali, Khalid Majnouni
  • Patent number: 10189986
    Abstract: Copolymers having General Formula (I): in which R1, R2, and R3 are chosen from C1 to C30 aliphatic groups, R4 is chosen from divalent C4 to C7 linear aliphatic groups and divalent C4 to C7 linear heteroaliphatic groups, optionally substituted with one or more C1-C6 linear aliphatic groups, C1-C6 branched aliphatic groups, or combination thereof, R5, R6, and R7 are each independently chosen from methyl or hydrogen, x is chosen from 0 to 0.8, y is chosen from 0 to 0.8, when y is 0, x is greater than 0, and when x is 0, y is greater than 0, and z is chosen from 0.1 to 0.9. The summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates, including contacting the fluid with at least one copolymer of General Formula (I).
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: January 29, 2019
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Mohammed Al-Daous, Hassan Al-Ajwad, Shaikh Asrof Ali, Shadi Adel, Megat Rithauddeen
  • Publication number: 20170321108
    Abstract: Copolymers having General Formula (I): in which R1 and R3 are chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combination thereof, where the divalent C4-C7 heteroaliphatic groups of R1 and R3 include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 or R3 is two, R2 is chosen from Q1 and Q2, x is a molar fraction range chosen from 0.1 to 0.9, y is a molar fraction range chosen from 0.1 to 0.9, and z is a molar fraction range chosen from 0 to 0.8, where the summation of x, y, and z equals 1. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with at least one copolymer of General Formula (I).
    Type: Application
    Filed: May 3, 2017
    Publication date: November 9, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Khalid Majnouni, Abdullah Al-Malki, Mohamed Elanany, Manal Al-Eid, Mohammed Al-Daous, Shaikh Asrof Ali
  • Publication number: 20170321012
    Abstract: Copolymers having General Formula (I): in which R1 is chosen from divalent C4-C7 aliphatic groups and divalent C4-C7 heteroaliphatic groups, optionally substituted with one or more C1-C6 aliphatic groups, heteroatoms independently chosen from O, N, and S, or combinations thereof, where: the divalent C4-C7 heteroaliphatic groups include one or two heteroatoms independently chosen from O, N, and S, and the maximum number of heteroatoms in R1 is two; x is a molar fraction range chosen from 0.05 to 0.95; and y is a molar fraction range chosen from 0.05 to 0.95, where the summation of x and y equals 1. Methods for inhibiting formation of clathrate hydrates in a fluid capable of forming the clathrate hydrates. The methods include contacting the fluid with at least one copolymer of General Formula (I) under conditions suitable for forming the clathrate hydrates.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 9, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Mohamed Elanany, Khalid Majnouni, Rashed Alessa, Abdullah Al-Malki, Hassan Al-Ajwad, Mohammed Al-Daous, Shaikh Asrof Ali
  • Publication number: 20170320985
    Abstract: Methods for synthesizing acryloyl-based copolymers. The methods include providing a free radical initiator with a solution including monomeric repeating units, a chain transfer agent, and an organic solvent to form a reaction mixture, in which the monomeric repeating units include a first monomeric repeating unit having formula (1a), a second monomeric repeating unit having formula (1b) or (1d), and optionally a third monomeric repeating unit having formula (1c): in which the organic solvent is chosen from monoethylene glycol, ethanol, toluene, or combination thereof; and (B) initiating a polymerization reaction in the reaction mixture to polymerize the monomeric repeating units, thereby synthesizing the acryloyl-based copolymer. Methods for inhibiting formation of clathrate hydrates include contacting a fluid with the acryloyl-based copolymer synthesized in the reaction mixture.
    Type: Application
    Filed: May 3, 2017
    Publication date: November 9, 2017
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Sameer A. Al-Ghamdi, Abdullah Al-Malki, Manal Al-Eid, Mohamed Elanany, Shaikh Asrof Ali