Patents by Inventor Abdullah G. AL-SEHEMI

Abdullah G. AL-SEHEMI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240155852
    Abstract: The present disclosure provides a thin-film sensor including a top layer passivation including top electrical contacts; an active layer disposed under the top layer, the active layer including an active material; a bottom layer passivation disposed below the active layer and including bottom electrical contacts; and a semiconductor layer disposed around the active layer, such that the semiconducting layer sandwiches the active layer.
    Type: Application
    Filed: November 9, 2022
    Publication date: May 9, 2024
    Inventors: Abdullah G. Al-Sehemi, Richard O. Ocaya, Fahrettin Yakuphanoglu, Ahmed A. Al-Ghamdi, Mohammed A. Assiri, Mehboobali Pannipara
  • Publication number: 20240149295
    Abstract: A thin film coating apparatus is disclosed, including a sample holder rotatably configured in the apparatus. The sample holder is coupled to a motor configured to rotate the sample holder. The apparatus includes a heating chamber disposed around the sample holder. The heating chamber is configured to supply heat to a substrate loaded on the sample holder. The apparatus includes a top cover configured to selectively allow access to the substrate loaded on the sample holder. A controller is configured to: detect a speed of rotation of the sample holder; and operate the top cover to allow access to the substrate loaded on the sample holder when the detected speed of rotation of the sample holder is within a predefined range.
    Type: Application
    Filed: November 9, 2022
    Publication date: May 9, 2024
    Inventors: Abdullah G. Al-Sehemi, H. Algarni, Fahrettin Yakuphanoglu, Ahmed A. Al-Ghamdi, Aysegul DERE, Mehboobali Pannipara
  • Publication number: 20240021975
    Abstract: A flexible wearable antenna intended for wireless communications applicable to medical telemetry.
    Type: Application
    Filed: July 15, 2022
    Publication date: January 18, 2024
    Applicant: The Research Center for Advanced Materials Science, King Khalid University (KKU)
    Inventors: Abdullah G. Al-Sehemi, Ahmed A. Al-Ghamdi, Nikolay Todorov Dishovski, Nikolay Todorov Atanasov, Gabriela Lachezarova Atanasova
  • Publication number: 20230343960
    Abstract: In the present disclosure, a p-n organic battery comprising a p-type organic semiconductor and n-type organic semiconductor as active electrodes, anode and cathode current electrodes, separator and electrolyte and a method of fabricating the same is disclosed. The p-n organic battery has an p-type organic semiconductor separated from a n type organic semiconductor by an aqueous electrolyte solution, contained in an insulating vessel with suitable terminals (not shown) being provided in electric contact with the anode current electrode and the cathode current electrode. The aqueous electrolyte can comprise water, and a transition metal salt such as NiCl2, CuCl2 dissolved in the water.
    Type: Application
    Filed: April 20, 2022
    Publication date: October 26, 2023
    Inventors: Abdullah G. Al-Sehemi, Aysegul Dere, Ahmed A. Al-Ghamdi, Fahrettin Yakuphanoglu, Mehboobali Pannipara
  • Patent number: 11359076
    Abstract: The disclosure relates to a composition of biocomposite based on natural rubber containing sol-bioglass, which is used and intended for insulating layers and pads in flexible antennas which can be worn in close vicinity with regard to the human body without adversely affecting it. According to the invention, the composition of the biocomposite intended and designed for insulating layers and pads in flexible antennas based on natural rubber is filled with sol-gel derived bioglass amounting to a quantitative range starting from 8 to 50 parts by weight with regard to 100 parts by weight rubber and having following list of remaining ingredients: zinc oxide from 2.5 to 3.5, stearic acid from 1 to 2.5, bis (triethoxysilylpropyl) tetrasulfide from 4 to 6, tertiary butyl-benzothiazolyl sulfenamide from 1 to 2.5, sulfur from 1 to 3 and isopropyl-phenyl-?-phenylene diamine from 0.5 to 1.5.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: June 14, 2022
    Assignee: The Research Center for Advanced Materials Science King Khalid University (KKU)
    Inventors: Abdullah G. Al-Sehemi, Ahmed A. Al-Ghamdi, Nikolay Todorov Dishovski, Lychezar Nikolaev Radev, Irena Kirilova Mihaylova, Petrunka Atanasova Malinova, Nikolay Todorov Atanasov, Gabriela Lychezarova Atanasova
  • Patent number: 11214671
    Abstract: A conductive nanocomposite which contains a mixed polymer matrix which contains a rubber and a polyether, carbon nanoparticles, and transition metal nanoparticles. The conductive nanocomposite has a nonlinear relationship between resistivity and temperature characterized by an exponential increase reaching a peak resistivity followed by an exponential decrease as temperature increases. Also disclosed is a method of forming the conductive nanocomposite involving mixing the components, aging, and pressing. The conductive nanocomposite forms a component of a heater that is self-regulating as a result of the nonlinear relationship between resistivity and temperature of the conductive nanocomposite. The nanocomposite also forms a component of a thermistor.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: January 4, 2022
    Assignees: King Abdulaziz University, King Khalid University
    Inventors: Ahmed A. Al-Ghamdi, Abdullah G. Al-Sehemi, Abul Kalam, Aysegul Dere, Fahrettin Yakuphanoglu
  • Patent number: 11205737
    Abstract: A photomemcapacitor device comprising a metal oxide semiconductor material is provided. The photocapacitor device comprises a p-n junction and a Schottky junction. A photomemcapacitor is provided for responding to photons at specified wavelengths.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: December 21, 2021
    Assignees: KING ABDULAZIZ UNIVERSITY, KING KHALID UNIVERSITY
    Inventors: Abdullah G. Al-Sehemi, Ahmed A. Al-Ghamdi, Abul Kalam, Aysegul Dere, Fahrettin Yakuphanoglu
  • Patent number: 11203684
    Abstract: A conductive nanocomposite which contains a mixed polymer matrix which contains a rubber and a polyether, carbon nanoparticles, and transition metal nanoparticles. The conductive nanocomposite has a nonlinear relationship between resistivity and temperature characterized by an exponential increase reaching a peak resistivity followed by an exponential decrease as temperature increases. Also disclosed is a method of forming the conductive nanocomposite involving mixing the components, aging, and pressing. The conductive nanocomposite forms a component of a heater that is self-regulating as a result of the nonlinear relationship between resistivity and temperature of the conductive nanocomposite. The nanocomposite also forms a component of a thermistor.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: December 21, 2021
    Assignees: King Abdulaziz University, King Khalid University
    Inventors: Ahmed A. Al-Ghamdi, Abdullah G. Al-Sehemi, Abul Kalam, Aysegul Dere, Fahrettin Yakuphanoglu
  • Patent number: 10982082
    Abstract: A conductive nanocomposite which contains a mixed polymer matrix which contains a rubber and a polyether, carbon nanoparticles, and transition metal nanoparticles. The conductive nanocomposite has a nonlinear relationship between resistivity and temperature characterized by an exponential increase reaching a peak resistivity followed by an exponential decrease as temperature increases. Also disclosed is a method of forming the conductive nanocomposite involving mixing the components, aging, and pressing. The conductive nanocomposite forms a component of a heater that is self-regulating as a result of the nonlinear relationship between resistivity and temperature of the conductive nanocomposite. The nanocomposite also forms a component of a thermistor.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: April 20, 2021
    Assignee: King Abdulaziz University
    Inventors: Ahmed A. Al-Ghamdi, Abdullah G. Al-Sehemi, Abul Kalam, Aysegul Dere, Fahrettin Yakuphanoglu
  • Patent number: 10964899
    Abstract: A hybrid junction solar light sensitive photodiode includes at least one inorganic p-n junction and at least one organic semiconductor p-n junction (pnpn) in series. The photoresponse properties of the photodiode is controlled using an inorganic layer and an organic layer. The photoactive layer is an organic semiconducting material having a mobility higher than 0.5 cm2/Vs. The metal oxide layer is an oxide semiconductor comprising of ternary oxides.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: March 30, 2021
    Assignee: King Abdulaziz University
    Inventors: Abdullah G. Al-Sehemi, Ahmed A. Al-Ghamdi, Abul Kalam, Aysegul Dere, Fahrettin Yakuphanoglu
  • Publication number: 20210054175
    Abstract: The disclosure relates to a composition of biocomposite based on natural rubber containing sol-bioglass, which is used and intended for insulating layers and pads in flexible antennas which can be worn in close vicinity with regard to the human body without adversely affecting it. According to the invention, the composition of the biocomposite intended and designed for insulating layers and pads in flexible antennas based on natural rubber is filled with sol-gel derived bioglass amounting to a quantitative range starting from 8 to 50 parts by weight with regard to 100 parts by weight rubber and having following list of remaining ingredients: zinc oxide from 2.5 to 3.5, stearic acid from 1 to 2.5, bis (triethoxysilylpropyl) tetrasulfide from 4 to 6, tertiary butyl-benzothiazolyl sulfenamide from 1 to 2.5, sulfur from 1 to 3 and isopropyl-phenyl-?-phenylene diamine from 0.5 to 1.5.
    Type: Application
    Filed: April 27, 2020
    Publication date: February 25, 2021
    Applicant: The Research Center for Advanced Materials Science King Khalid University (KKU)
    Inventors: Abdullah G. AL-SEHEMI, Ahmed A. AL-GHAMDI, Nikolay Todorov DISHOVSKI, Lychezar Nikolaev RADEV, Irena Kirilova MIHAYLOVA, Petrunka Atanasova MALINOVA, Nikolay Todorov ATANASOV, Gabriela Lychezarova ATANASOVA
  • Publication number: 20190106553
    Abstract: The subject matter of the present patent application constitutes an elastomer composition intended for embedding a compact antenna designed to be used and operated in close proximity with regard to the human body to build short-range wireless communication links. The elastomer composition for embedding a compact antenna is based on natural rubber and components whose quantities are expressed in parts in wt per 100 parts by weight of natural rubber (phr), namely: sulfur—1 to 2 phr; phenyl-trichloromethylsulfenyl-benzene sulfonamide—0.1 to 0.5 phr; diphenylguanidine—from 0.3 to 0.8 phr; tertiary butyl-benzothiazolyl-sulfenamide—from 1 to 2 phr; dimethylbutyl-phenyl-p-phenylenediamine—1.5 phr; polymerized trimethyl dihydroquinoline—1.5 phr; stearic acid—2.0 phr; zinc oxide—3.0 phr; rapeseed oil—15 to 30 phr; bis (triethoxysilylpropyl) tetrasulfide-silane—from 0.1 to 4.0 phr; 3-thiocyanato-propyl-triethoxy silane—from 2.0 to 6.0 phr; carbon black—5.0 phr; optionally silicon dioxide—from 10 to 50.
    Type: Application
    Filed: November 21, 2017
    Publication date: April 11, 2019
    Applicant: KING KHALID UNIVERSITY (KKU)
    Inventors: Abdullah G. AL-SEHEMI, Ahmed A. AL-Ghamdi, Nikolay Todorov Dishovsky, Nikolay Todorov Atanasov, Gabriela Lychezarova Atanasova