Patents by Inventor Abdullah M. Aitani

Abdullah M. Aitani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11866389
    Abstract: According to embodiments, a process of forming a catalyst for aromatizing hydrocarbons may include enhancing a mesoporosity of a zeolite support by a base-leaching treatment, an acid-leaching treatment, or both to form a zeolite support having enhanced mesoporosity, mixing the zeolite support having enhanced mesoporosity with a solution containing zinc or gallium to disperse the zinc or gallium on the zeolite support having enhanced mesoporosity, and calcining the zeolite support having enhanced mesoporosity with zinc or gallium dispersed thereon to form a zinc- or gallium-doped zeolite catalyst having a mesopore volume of greater than 0.09 cm3/g and less than 0.20 cm3/g.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: January 9, 2024
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Yaming Jin, Ziyauddin S. Qureshi, Abdullah M. Aitani, Omer Refa Koseoglu, Mohammad Naseem Akhtar, Hassan Saeed Al-Awad Alasiri
  • Patent number: 11760943
    Abstract: A process for upgrading a hydrocarbon feed includes contacting the hydrocarbon feed with steam in the presence of a cracking catalyst in a steam catalytic cracking reactor at reaction conditions sufficient to cause at least a portion of hydrocarbons in the hydrocarbon feed to undergo one or more cracking reactions to produce a steam catalytic cracking effluent comprising light olefins, light aromatic compounds, or both, where the cracking catalyst comprises a ZSM-11 zeolite.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: September 19, 2023
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Aaron Chi Akah, Ziyauddin S. Qureshi, Abdullah M. Aitani, Siddiqui M. Abdulbari
  • Patent number: 11725149
    Abstract: A fluid catalytic cracking catalyst composition (FCC catalyst composition) includes an FCC catalyst and from 1 wt.% to 30 wt.% aromatization-promoting FCC additive. The FCC catalyst includes a USY zeolite, and the aromatization-promoting FCC additive is an MFI zeolite modified with an aromatization compound. The aromatization compound is a metal or metal oxide that includes a metal element from periods 4-6 of the IUPAC periodic table. A method for upgrading a hydrocarbon feed includes contacting the hydrocarbon feed with the FCC catalyst composition at reaction conditions sufficient to upgrade at least a portion of the hydrocarbon feed.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: August 15, 2023
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Yaming Jin, Omer Refa Koseoglu, Abdullah M. Aitani, Ziyauddin S. Qureshi, M. Abdullbari Siddiqui
  • Patent number: 11673845
    Abstract: Embodiments of the present disclosure are directed to processes for aromatizing hydrocarbons includes contacting the hydrocarbons with a catalyst including at least two different metal modifiers dispersed on surfaces of a hydrogen-form medium-pore zeolite support. Each of the at least two different metal modifiers comprises a metal selected from the group consisting of IUPAC Groups 3-12, and lanthanide metals, and the catalyst is substantially free of gallium. Contacting the hydrocarbons with the catalyst causes a least a portion of the hydrocarbons to undergo a chemical reaction to form aromatic hydrocarbons.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: June 13, 2023
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Ziyauddin S. Qureshi, Yaming Jin, Abdullah M. Aitani, Omer Refa Koseoglu, Mohammad Naseem Akhtar, Hassan Saeed Al-Awad Alasiri
  • Patent number: 11465950
    Abstract: According to embodiments, a process for aromatizing hydrocarbons may include contacting the hydrocarbons with a zinc- or gallium-doped ZSM-5 catalyst having a mesopore volume of greater than 0.09 cm3/g. Contacting the hydrocarbons with the catalyst causes a least a portion of the hydrocarbons to undergo chemical reactions to form aromatic hydrocarbons.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: October 11, 2022
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Yaming Jin, Ziyauddin S. Qureshi, Abdullah M. Aitani, Omer Refa Koseoglu, Mohammad Naseem Akhtar, Hassan Saeed Al-Awad Alasiri
  • Patent number: 11439991
    Abstract: Processes for aromatizing hydrocarbons include contacting the hydrocarbons with a catalyst composition comprising a metal oxide dispersed on a surface of a zeolite support, where contacting the hydrocarbons with the catalyst composition causes at least a portion of the hydrocarbons to undergo a chemical reaction to form aromatic hydrocarbons. The catalyst composition is prepared by a synthesis process that includes combining the zeolite support with a hydrocarbon solvent to form a zeolite mixture, where the hydrocarbon solvent pre-wets the pores of the zeolite support. The synthesis process further includes combining a polar solvent comprising a metal salt with the zeolite mixture to form an impregnated zeolite support. The synthesis process also includes drying the impregnated zeolite support and calcining the impregnated zeolite support to convert the metal salt to the metal oxide, thereby forming the catalyst composition.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: September 13, 2022
    Assignees: King Fahd University of Petroleum & Minerals, Saudi Arabian Oil Company
    Inventors: Palani Arudra, Abdullah M. Aitani, Yaming Jin, Omer Refa Koseoglu, Muhammad Naseem Akhtar
  • Publication number: 20220064082
    Abstract: According to embodiments, a process for aromatizing hydrocarbons may include contacting the hydrocarbons with a zinc- or gallium-doped ZSM-5 catalyst having a mesopore volume of greater than 0.09 cm3/g. Contacting the hydrocarbons with the catalyst causes a least a portion of the hydrocarbons to undergo chemical reactions to form aromatic hydrocarbons.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 3, 2022
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Yaming Jin, Ziyauddin S. Qureshi, Abdullah M. Aitani, Omer Refa Koseoglu, Mohammad Naseem Akhtar, Hassan Saeed Al-Awad Alasiri
  • Publication number: 20220064081
    Abstract: Embodiments of the present disclosure are directed to processes for aromatizing hydrocarbons includes contacting the hydrocarbons with a catalyst including at least two different metal modifiers dispersed on surfaces of a hydrogen-form medium-pore zeolite support. Each of the at least two different metal modifiers comprises a metal selected from the group consisting of IUPAC Groups 3-12, and lanthanide metals, and the catalyst is substantially free of gallium. Contacting the hydrocarbons with the catalyst causes a least a portion of the hydrocarbons to undergo a chemical reaction to form aromatic hydrocarbons.
    Type: Application
    Filed: September 3, 2020
    Publication date: March 3, 2022
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals
    Inventors: Ziyauddin S. Qureshi, Yaming Jin, Abdullah M. Aitani, Omer Refa Koseoglu, Mohammad Naseem Akhtar, Hassan Saeed Al-Awad Alasiri
  • Patent number: 11123715
    Abstract: Composite catalysts having bismuth silicate(s) (e.g. Bi2SiO5) and transition metal oxide(s) (e.g. nickel oxide) impregnated on mesoporous silica supports such as SBA-15, mesoporous silica foam, and silica sol. Methods of making and characterizing the composite catalysts as well as processes for oxidatively dehydrogenating alkanes (e.g. n-butane) and/or alkenes (e.g. 1-butene, 2-butene) to corresponding dienes (e.g. butadiene) employing the composite catalysts are also described.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: September 21, 2021
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Gazali Tanimu, Abdullah M. Aitani, Sachio Asaoka
  • Publication number: 20210187487
    Abstract: Processes for aromatizing hydrocarbons include contacting the hydrocarbons with a catalyst composition comprising a metal oxide dispersed on a surface of a zeolite support, where contacting the hydrocarbons with the catalyst composition causes at least a portion of the hydrocarbons to undergo a chemical reaction to form aromatic hydrocarbons. The catalyst composition is prepared by a synthesis process that includes combining the zeolite support with a hydrocarbon solvent to form a zeolite mixture, where the hydrocarbon solvent pre-wets the pores of the zeolite support. The synthesis process further includes combining a polar solvent comprising a metal salt with the zeolite mixture to form an impregnated zeolite support. The synthesis process also includes drying the impregnated zeolite support and calcining the impregnated zeolite support to convert the metal salt to the metal oxide, thereby forming the catalyst composition.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 24, 2021
    Applicants: King Fahd University of Petroleum & Minerals, Saudi Arabian Oil Company
    Inventors: Palani Arudra, Abdullah M. Aitani, Yaming Jin, Omer Refa Koseoglu, Muhammad Naseem Akhtar
  • Publication number: 20210154646
    Abstract: Composite catalysts having bismuth silicate(s) (e.g. Bi2SiO5) and transition metal oxide(s) (e.g. nickel oxide) impregnated on mesoporous silica supports such as SBA-15, mesoporous silica foam, and silica sol. Methods of making and characterizing the composite catalysts as well as processes for oxidatively dehydrogenating alkanes (e.g. n-butane) and/or alkenes (e.g. 1-butene, 2-butene) to corresponding dienes (e.g. butadiene) employing the composite catalysts are also described.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 27, 2021
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Gazali TANIMU, Abdullah M. AITANI, Sachio ASAOKA
  • Patent number: 10583423
    Abstract: Embodiments of processes for producing propylene utilize a dual catalyst system comprising a mesoporous silica catalyst impregnated with metal oxide and a mordenite framework inverted (MFI) structured silica catalyst downstream of the mesoporous silica catalyst, where the mesoporous silica catalyst includes a pore size distribution of at least 2.5 nm to 40 nm and a total pore volume of at least 0.600 cm3/g, and the MFI structured silica catalyst has a total acidity of 0.001 mmol/g to 0.1 mmol/g. The propylene is produced from the butene stream via metathesis by contacting the mesoporous silica catalyst and subsequent cracking by contacting the MFI structured silica catalyst.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: March 10, 2020
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Tazul Islam Bhuiyan, Sohel Shaikh, Mohammad Naseem Akhtar, Abdullah M. Aitani, Mohammed A. Al-Yami
  • Patent number: 10550333
    Abstract: The presently disclosed subject matter relates to methods of producing ethylene and propylene by the catalytic steam cracking of naphtha using an HZSM-5 catalyst. An example method can include providing a naphtha feedstock, providing steam, and providing an HZSM-5 catalyst. The method can further include preparing the HZSM-5 catalyst by titanium modification or alkaline treatment, followed by phosphorus modification. The method can further include feeding the naphtha feedstock and steam to a reactor containing the catalyst and removing an effluent from the reactor having a combined yield of ethylene and propylene of greater than about 45 wt-%.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: February 4, 2020
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Nabil Al-Yassir, Mohammed A. Siddiqui, Mian Rahat Saeed, Abdullah M. Aitani, Sulaiman S. Al-Khattaf, Ahmed S. Alzenaidi, Vidya Sagar Guggilla
  • Patent number: 10532347
    Abstract: Embodiments of processes for producing propylene utilize a dual catalyst system comprising a mesoporous silica catalyst impregnated with metal oxide and a mordenite framework inverted (MFI) structured silica catalyst downstream of the mesoporous silica catalyst, where the mesoporous silica catalyst includes a pore size distribution of at least 2.5 nm to 40 nm and a total pore volume of at least 0.600 cm3/g, and the MFI structured silica catalyst has a total acidity of 0.001 mmol/g to 0.1 mmol/g. The propylene is produced from the butene stream via metathesis by contacting the mesoporous silica catalyst and subsequent cracking by contacting the MFI structured silica catalyst.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: January 14, 2020
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Tazul Islam Bhuiyan, Sohel Shaikh, Mohammad Naseem Akhtar, Abdullah M. Aitani, Mohammed A. Al-Yami
  • Patent number: 10519384
    Abstract: The presently disclosed subject matter relates to methods of producing ethylene and propylene by the catalytic steam cracking of naphtha using an HZSM-5 catalyst. An example method can include providing a naphtha feedstock, providing steam, and providing an HZSM-5 catalyst. The method can further include preparing the HZSM-5 catalyst by titanium modification or alkaline treatment, followed by phosphorus modification. The method can further include feeding the naphtha feedstock and steam to a reactor containing the catalyst and removing an effluent from the reactor having a combined yield of ethylene and propylene of greater than about 45 wt-%.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: December 31, 2019
    Assignee: SABIC GLOBAL TECHNOLOGIES B.V.
    Inventors: Nabil Al-Yassir, Mohammed A. Siddiqui, Mian Rahat Saeed, Abdullah M. Aitani, Sulaiman S. Al-Khattaf, Ahmed S. Alzenaidi, Vidya Sagar Guggilla
  • Publication number: 20180355259
    Abstract: The presently disclosed subject matter relates to methods of producing ethylene and propylene by the catalytic steam cracking of naphtha using an HZSM-5 catalyst. An example method can include providing a naphtha feedstock, providing steam, and providing an HZSM-5 catalyst. The method can further include preparing the HZSM-5 catalyst by titanium modification or alkaline treatment, followed by phosphorus modification. The method can further include feeding the naphtha feedstock and steam to a reactor containing the catalyst and removing an effluent from the reactor having a combined yield of ethylene and propylene of greater than about 45 wt-%.
    Type: Application
    Filed: December 13, 2016
    Publication date: December 13, 2018
    Inventors: Nabil AL-YASSIR, Mohammed A. SIDDIQUI, Mian Rahat SAEED, Abdullah M. AITANI, Sulaiman S. AL-KHATTAF, Ahmed S. Alzenaidi, Vidya Sagar GUGGILLA
  • Publication number: 20180326408
    Abstract: Embodiments of processes for producing propylene utilize a dual catalyst system comprising a mesoporous silica catalyst impregnated with metal oxide and a mordenite framework inverted (MFI) structured silica catalyst downstream of the mesoporous silica catalyst, where the mesoporous silica catalyst includes a pore size distribution of at least 2.5 nm to 40 nm and a total pore volume of at least 0.600 cm3/g, and the MFI structured silica catalyst has a total acidity of 0.001 mmol/g to 0.1 mmol/g. The propylene is produced from the butene stream via metathesis by contacting the mesoporous silica catalyst and subsequent cracking by contacting the MFI structured silica catalyst.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 15, 2018
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Tazul Islam Bhuiyan, Sohel Shaikh, Mohammad Naseem Akhtar, Abdullah M. Aitani, Mohammed A. Al-Yami
  • Patent number: 10052618
    Abstract: Embodiments of processes for producing propylene utilize a dual catalyst system comprising a mesoporous silica catalyst impregnated with metal oxide and a mordenite framework inverted (MFI) structured silica catalyst downstream of the mesoporous silica catalyst, where the mesoporous silica catalyst includes a pore size distribution of at least 2.5 nm to 40 nm and a total pore volume of at least 0.600 cm3/g, and the MFI structured silica catalyst has a total acidity of 0.001 mmol/g to 0.1 mmol/g. The propylene is produced from the butene stream via metathesis by contacting the mesoporous silica catalyst and subsequent cracking by contacting the MFI structured silica catalyst.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: August 21, 2018
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Tazul Islam Bhuiyan, Sohel Shaikh, Mohammad Naseem Akhtar, Abdullah M. Aitani, Mohammed A. Al-Yami
  • Patent number: 10005703
    Abstract: Embodiments of a metathesis process for producing propylene comprise providing a metathesis catalyst comprising an amorphous mesoporous silica foam impregnated with metal oxides, where the metathesis catalyst has a pore size distribution of at least 3 nm to 40 nm and a total pore volume of at least 0.700 cm3/g. The process further involves producing a product stream comprising propylene by contacting a feed stream comprising butene with the metathesis catalyst.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: June 26, 2018
    Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Raed Abudawoud, Sulaiman Saleh Al-Khattaf, Arudra Palani, Abdullah M. Aitani, Mohammad Naseem Akhtar, Tazul Islam Bhuiyan, Mohammed A. Al-Yami
  • Publication number: 20180155256
    Abstract: Embodiments of processes for producing propylene utilize a dual catalyst system comprising a mesoporous silica catalyst impregnated with metal oxide and a mordenite framework inverted (MFI) structured silica catalyst downstream of the mesoporous silica catalyst, where the mesoporous silica catalyst includes a pore size distribution of at least 2.5 nm to 40 nm and a total pore volume of at least 0.600 cm3/g, and the MFI structured silica catalyst has a total acidity of 0.001 mmol/g to 0.1 mmol/g. The propylene is produced from the butene stream via metathesis by contacting the mesoporous silica catalyst and subsequent cracking by contacting the MFI structured silica catalyst.
    Type: Application
    Filed: January 2, 2018
    Publication date: June 7, 2018
    Applicants: Saudi Arabian Oil Company, King Fahd University of Petroleum & Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Tazul Islam Bhuiyan, Sohel Shaikh, Mohammad Naseem Akhtar, Abdullah M. Aitani, Mohammed A. Al-Yami