Patents by Inventor Abdullah Mohammed Aitani

Abdullah Mohammed Aitani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11351527
    Abstract: Embodiments of zeolite composite catalysts and methods of producing the zeolite composite catalysts are provided, where the methods comprise dissolving in an alkaline solution a catalyst precursor comprising at least one mesoporous zeolite while heating, stirring, or both to yield a dissolved zeolite solution, where the mesoporous zeolite has a molar ratio of SiO2/Al2O3 of at least 30, where the mesoporous zeolite comprises zeolite beta, adjusting the pH of the dissolved zeolite solution, aging the pH adjusted dissolved zeolite solution to yield solid zeolite composite from the dissolved zeolite solution, and calcining the solid zeolite composite to produce the zeolite composite catalyst, where the zeolite composite catalyst has a mesostructure comprising at least one disordered mesophase and at least one ordered mesophase, and where the zeolite composite catalyst has a surface area defined by the Brunauer-Emmett-Teller (BET) analysis of at least 600 m2/g.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: June 7, 2022
    Assignees: King Fahd University of Petroleum and Minerals, Saudi Arabian Oil Company
    Inventors: Balasamy Rabindran Jermy, Syed Ahmed Ali, Raed Hasan Abudawoud, Abdullah Mohammed Aitani, Sulaiman Saleh Al-Khattaf
  • Patent number: 10844294
    Abstract: An integrated process catalytically cracks whole light crude oil into light olefins, especially propylene and ethylene. The process is integrated with an adjacent conventional fluid catalytic cracking unit whereby the heavy liquid product mixture (light and heavy cycle oils) from whole crude oil cracking is mixed with vacuum gas oil (VGO) for further processing. The process comprises recycling total product fraction of light cracked naphtha (LCN) and mixing with fresh crude oil feed. High propylene and ethylene yields are obtained by cracking the whole light crude oil and LCN in an FCC configuration using a mixture of FCC catalyst and ZSM-5 additive at a temperature between, that of conventional FCC and steam cracking.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: November 24, 2020
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Abdullah Mohammed Aitani, Sulaiman Saleh Al-Khattaf, Akram Abdulhakeem Al-Absi
  • Publication number: 20200291306
    Abstract: An integrated process catalytically cracks whole light crude oil into light olefins, especially propylene and ethylene. The process is integrated with an adjacent conventional fluid catalytic cracking unit whereby the heavy liquid product mixture (light and heavy cycle oils) from whole crude oil cracking is mixed with vacuum gas oil (VGO) for further processing. The process comprises recycling total product fraction of light cracked naphtha (LCN) and mixing with fresh crude oil feed. High propylene and ethylene yields are obtained by cracking; the whole light crude oil and LCN in an FCC configuration using a mixture of FCC catalyst and ZSM-5 additive at a temperature between, that of conventional FCC and steam cracking.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Abdullah Mohammed Aitani, Sulaiman Saleh Al-Khattaf, Akram Abdulhakeem Al-Absi
  • Publication number: 20200254428
    Abstract: Embodiments of zeolite composite catalysts and methods of producing the zeolite composite catalysts are provided, where the methods comprise dissolving in an alkaline solution a catalyst precursor comprising at least one mesoporous zeolite while heating, stirring, or both to yield a dissolved zeolite solution, where the mesoporous zeolite has a molar ratio of SiO2/Al2O3 of at least 30, where the mesoporous zeolite comprises zeolite beta, adjusting the pH of the dissolved zeolite solution, aging the pH adjusted dissolved zeolite solution to yield solid zeolite composite from the dissolved zeolite solution, and calcining the solid zeolite composite to produce the zeolite composite catalyst, where the zeolite composite catalyst has a mesostructure comprising at least one disordered mesophase and at least one ordered mesophase, and where the zeolite composite catalyst has a surface area defined by the Brunauer-Emmett-Teller (BET) analysis of at least 600 m2/g.
    Type: Application
    Filed: April 15, 2020
    Publication date: August 13, 2020
    Applicants: King Fahd University of Petroleum and Minerals, Saudi Arabian Oil Company
    Inventors: Balasamy Rabindran Jermy, Syed Ahmed Ali, Raed Hasan Abudawoud, Abdullah Mohammed Aitani, Sulaiman Saleh Al-Khattaf
  • Patent number: 10661260
    Abstract: Embodiments of zeolite composite catalysts and methods of producing the zeolite composite catalysts are provided, where the methods comprise dissolving in an alkaline solution a catalyst precursor comprising at least one mesoporous zeolite while heating, stirring, or both to yield a dissolved zeolite solution, where the mesoporous zeolite has a molar ratio of SiO2/Al2O3 of at least 30, where the mesoporous zeolite comprises zeolite beta, adjusting the pH of the dissolved zeolite solution, aging the pH adjusted dissolved zeolite solution to yield solid zeolite composite from the dissolved zeolite solution, and calcining the solid zeolite composite to produce the zeolite composite catalyst, where the zeolite composite catalyst has a mesostructure comprising at least one disordered mesophase and at least one ordered mesophase, and where the zeolite composite catalyst has a surface area defined by the Brunauer-Emmett-Teller (BET) analysis of at least 600 m2/g.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: May 26, 2020
    Assignees: King Fahd University of Petroleum and Minerals, Saudi Arabian Oil Company
    Inventors: Balasamy Rabindran Jermy, Syed Ahmed Ali, Raed Hasan Abudawoud, Abdullah Mohammed Aitani, Sulaiman Saleh Al-Khattaf
  • Patent number: 10173205
    Abstract: A method of preparing a metal-doped zeolite catalyst with a modified topology (e.g. a pillared zeolite or a delaminated zeolite), and a method of using thereof in a process for converting an alkyl-aromatic hydrocarbon stream to BTX (benzene/toluene/xylene), wherein an enhanced pore topology in the metal-doped zeolite catalyst determines a selectivity to transalkylation of trimethylbenzene to xylene, which in turn leads to a higher xylene yield. Various embodiments of the method of preparing the metal-doped zeolite catalyst, and the process for converting the alkyl-aromatic hydrocarbon stream to BTX are also provided.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: January 8, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Syed Ahmed Ali, Abdullah Mohammed Aitani
  • Patent number: 10173204
    Abstract: A method of preparing a metal-doped zeolite catalyst with a modified topology (e.g. a pillared zeolite or a delaminated zeolite), and a method of using thereof in a process for converting an alkyl-aromatic hydrocarbon stream to BTX (benzene/toluene/xylene), wherein an enhanced pore topology in the metal-doped zeolite catalyst determines a selectivity to transalkylation of trimethylbenzene to xylene, which in turn leads to a higher xylene yield. Various embodiments of the method of preparing the metal-doped zeolite catalyst, and the process for converting the alkyl-aromatic hydrocarbon stream to BTX are also provided.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: January 8, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Syed Ahmed Ali, Abdullah Mohammed Aitani
  • Publication number: 20180361365
    Abstract: Embodiments of zeolite composite catalysts and methods of producing the zeolite composite catalysts are provided, where the methods comprise dissolving in an alkaline solution a catalyst precursor comprising at least one mesoporous zeolite while heating, stirring, or both to yield a dissolved zeolite solution, where the mesoporous zeolite has a molar ratio of SiO2/Al2O3 of at least 30, where the mesoporous zeolite comprises zeolite beta, adjusting the pH of the dissolved zeolite solution, aging the pH adjusted dissolved zeolite solution to yield solid zeolite composite from the dissolved zeolite solution, and calcining the solid zeolite composite to produce the zeolite composite catalyst, where the zeolite composite catalyst has a mesostructure comprising at least one disordered mesophase and at least one ordered mesophase, and where the zeolite composite catalyst has a surface area defined by the Brunauer—Emmett—Teller (BET) analysis of at least 600 m2/g.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Applicants: King Fahd University of Petroleum and Minerals, Saudi Arabian Oil Company
    Inventors: Balasamy Rabindran Jermy, Syed Ahmed Ali, Raed Hasan Abudawoud, Abdullah Mohammed Aitani, Sulaiman Saleh Al-Khattaf
  • Patent number: 10150106
    Abstract: A method of preparing a metal-doped zeolite catalyst with a modified topology (e.g. a pillared zeolite or a delaminated zeolite), and a method of using thereof in a process for converting an alkyl-aromatic hydrocarbon stream to BTX (benzene/toluene/xylene), wherein an enhanced pore topology in the metal-doped zeolite catalyst determines a selectivity to transalkylation of trimethylbenzene to xylene, which in turn leads to a higher xylene yield. Various embodiments of the method of preparing the metal-doped zeolite catalyst, and the process for converting the alkyl-aromatic hydrocarbon stream to BTX are also provided.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: December 11, 2018
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Sulaiman Saleh Al-Khattaf, Syed Ahmed Ali, Abdullah Mohammed Aitani
  • Publication number: 20180257064
    Abstract: A method of preparing a metal-doped zeolite catalyst with a modified topology (e.g. a pillared zeolite or a delaminated zeolite), and a method of using thereof in a process for converting an alkyl-aromatic hydrocarbon stream to BTX (benzene/toluene/xylene), wherein an enhanced pore topology in the metal-doped zeolite catalyst determines a selectivity to transalkylation of trimethylbenzene to xylene, which in turn leads to a higher xylene yield. Various embodiments of the method of preparing the metal-doped zeolite catalyst, and the process for converting the alkyl-aromatic hydrocarbon stream to BTX are also provided.
    Type: Application
    Filed: May 9, 2018
    Publication date: September 13, 2018
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Sulaiman Saleh Al-Khattaf, Syed Ahmed Ali, Abdullah Mohammed Aitani
  • Patent number: 10035140
    Abstract: A method of preparing a metal-doped zeolite catalyst with a modified topology (e.g. a pillared zeolite or a delaminated zeolite), and a method of using thereof in a process for converting an alkyl-aromatic hydrocarbon stream to BTX (benzene/toluene/xylene), wherein an enhanced pore topology in the metal-doped zeolite catalyst determines a selectivity to transalkylation of trimethylbenzene to xylene, which in turn leads to a higher xylene yield. Various embodiments of the method of preparing the metal-doped zeolite catalyst, and the process for converting the alkyl-aromatic hydrocarbon stream to BTX are also provided.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: July 31, 2018
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Syed Ahmed Ali, Abdullah Mohammed Aitani
  • Publication number: 20180078929
    Abstract: A method of preparing a metal-doped zeolite catalyst with a modified topology (e.g. a pillared zeolite or a delaminated zeolite), and a method of using thereof in a process for converting an alkyl-aromatic hydrocarbon stream to BTX (benzene/toluene/xylene), wherein an enhanced pore topology in the metal-doped zeolite catalyst determines a selectivity to transalkylation of trimethylbenzene to xylene, which in turn leads to a higher xylene yield. Various embodiments of the method of preparing the metal-doped zeolite catalyst, and the process for converting the alkyl-aromatic hydrocarbon stream to BTX are also provided.
    Type: Application
    Filed: September 20, 2016
    Publication date: March 22, 2018
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Sulaiman Saleh AL-KHATTAF, Syed Ahmed ALI, Abdullah Mohammed AITANI
  • Publication number: 20180057420
    Abstract: This present disclosure relates to processes and compositions for toluene methylation in an aromatics complex for producing paraxylene. More specifically, the present disclosure relates to a process for producing paraxylene which includes alkylating a toluene stream and a methanol stream in a toluene methylation zone operating under toluene methylation conditions in the presence of a catalyst comprising a MFI crystal to produce a toluene methylation product stream.
    Type: Application
    Filed: October 27, 2017
    Publication date: March 1, 2018
    Inventors: Antoine Negiz, Elie Jean Fayad, Ali Jahel, Sulaiman Saleh Al-Khattaf, Abdullah Mohammed Aitani, Palani Arudra, Atif Fazal
  • Patent number: 9783464
    Abstract: A novel process and a novel catalyst for the production of light olefins. 1-butene is cracked in the presence of an acid- or base-modified silicalite-1 catalyst bed, wherein the modified silicalite-1 has a Si/Al ratio of greater than 1000. The modification procedures described herein increase the selectivity of the silicalite-1 catalyst toward light olefins such as ethylene and propylene. The catalytic cracking of 1-butene may be carried out in a fixed bed reactor or a fluidized bed reactor.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: October 10, 2017
    Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Abdullah Mohammed Aitani
  • Patent number: 9783465
    Abstract: A novel process and a novel catalyst for the production of light olefins. 1-butene is cracked in the presence of an acid- or base-modified silicalite-1 catalyst bed, wherein the modified silicalite-1 has a Si/Al ratio of greater than 1000. The modification procedures described herein increase the selectivity of the silicalite-1 catalyst toward light olefins such as ethylene and propylene. The catalytic cracking of 1-butene may be carried out in a fixed bed reactor or a fluidized bed reactor.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: October 10, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Abdullah Mohammed Aitani
  • Publication number: 20170217855
    Abstract: A novel process and a novel catalyst for the production of light olefins. 1-butene is cracked in the presence of an acid- or base-modified silicalite-1 catalyst bed, wherein the modified silicalite-1 has a SiAl ratio of greater than 1000. The modification procedures described herein increase the selectivity of the silicalite-1 catalyst toward light olefins such as ethylene and propylene. The catalytic cracking of 1-butene may be carried out in a fixed bed reactor or a fluidized bed reactor.
    Type: Application
    Filed: April 17, 2017
    Publication date: August 3, 2017
    Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Sulaiman Saleh AL-KHATTAF, Arudra PALANI, Abdullah Mohammed AITANI
  • Patent number: 9656928
    Abstract: A novel process and a novel catalyst for the production of light olefins. 1-butene is cracked in the presence of an acid- or base-modified silicalite-1 catalyst bed, wherein the modified silicalite-1 has a Si/Al ratio of greater than 1000. The modification procedures described herein increase the selectivity of the silicalite-1 catalyst toward light olefins such as ethylene and propylene. The catalytic cracking of 1-butene may be carried out in a fixed bed reactor or a fluidized bed reactor.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: May 23, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Arudra Palani, Abdullah Mohammed Aitani
  • Patent number: 9586873
    Abstract: A method is disclosed for selective simultaneous production of para-xylene, para-ethyltoluene and para-diethylbenzene from a reactant stream containing ethylbenzene and methanol, as an alkylating agent. The process comprises alkylation of the feedstock in a fluidized-bed rector under alkylating conditions, over a modified ZSM-5-based catalyst to produce streams containing above 95% para-isomers of dialkylbenzenes. The method also includes the steps of multilayer silylation to achieve simultaneous selectivity of the para-isomers of dialkylbenzenes.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: March 7, 2017
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Saleh Al-Khattaf, Syed Ahmed Ali, Abdullah Mohammed Aitani
  • Publication number: 20160130197
    Abstract: A novel process and a novel catalyst for the production of light olefins. 1-butene is cracked in the presence of an acid- or base-modified silicalite-1 catalyst bed, wherein the modified silicalite-1 has a Si/Al ratio of greater than 1000. The modification procedures described herein increase the selectivity of the silicalite-1 catalyst toward light olefins such as ethylene and propylene. The catalytic cracking of 1-butene may be carried out in a fixed bed reactor or a fluidized bed reactor.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 12, 2016
    Applicant: King Fahd University of Petroleum and Minerals
    Inventors: Sulaiman Saleh AL-KHATTAF, Arudra PALANI, Abdullah Mohammed AITANI
  • Patent number: 9221037
    Abstract: A transalkylation catalyst for the transalkylation of a heavy reformate is provided. The catalyst includes two solid acid zeolites having different physical and chemical properties, and at least three metals selected from the group 4 lanthanthides, and the elements found in groups 6 and 10 of the periodic table.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: December 29, 2015
    Assignees: SAUDI ARABIAN OIL COMPANY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
    Inventors: Cemal Ercan, Yuguo Wang, Mohammed Ashraf Ali, Sulaiman Saleh Al-Khattaf, Syed Ahmed Ali, Abdullah Mohammed Aitani