Patents by Inventor Abe Karem

Abe Karem has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090220747
    Abstract: Tapered layers of pre-cured composite material are integrated into a tapered, highly stressed laminate structure in order to provide improved compressive strength. The pre-cured composite material can advantageously be cured under tension as pultruded material, to further augment compressive strength. The thickness of composite layers can be tapered on their termination edges by mechanically abrading, chemical abrading, or other methods. Especially preferred embodiments include aircraft structural components such as wings, wing spars, wing skins, fuselage skins, rotor blades, propellers, and propeller blades. Preferred laminates can be constructed to have at least 6, 10, 30, 50, or 100 layers of material, and can have a maximum thickness of at least 0.15, 0.25, 0.5, 1.0, or 5.0 inches.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 3, 2009
    Inventor: Abe Karem
  • Publication number: 20090121081
    Abstract: Aircraft fuselage structures have fuselage bulkheads in which the bulkhead outer caps are integrated with the skin, thereby reducing fastener count and weight. These outer caps and skin are preferably co-cured to form a strong structure. The outer caps can be advantageously constructed as continuous hoops of pultruded elements. The outer cap need not be interrupted by contours or cutouts for stringers, saving weight and reducing complexity. It is contemplated that by integrating the bulkhead outer caps into the skin, a bulkhead can still maintain equivalent stiffness and strength, while saving a significant number of rivets as compared to a comparable design without the outer cap.
    Type: Application
    Filed: October 7, 2008
    Publication date: May 14, 2009
    Inventor: Abe Karem
  • Publication number: 20090072439
    Abstract: Composite structures with internal cavities are constructed with relatively stiff walls that can support additional composite laminate layers, creating a self-tooling structure. The structure is subsequently simulcured, preferably in combination with elevated temperatures or pressures. Preferred structures are long and slender, and are constructed with one or more internal cells. Rotor blades are especially suited to the preferred construction methods. The walls can be advantageously constructed using composite sandwich panels, having an exterior laminate layer. In preferred embodiments, additional composite layers can be added before or after the simulcuring process.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 19, 2009
    Inventor: Abe Karem
  • Publication number: 20070252029
    Abstract: A new generation of simplified vehicle electronic systems can be operated by either an onboard (manned) or off-board (remote controlled) operator, or automatically from an on-board system without any human operator. In the latter case, preferred embodiments can provide security against operation by unauthorized personnel and/or operation in an unauthorized travel path, without a need for a flight crew operated panic button or for a remote guidance facility. In another aspect, the operating controls of an aircraft or other highly complex vehicle are sufficiently simplified that the vehicle can be operated by a flight controller interface that is located outside the flight crew station. In yet another aspect, the communications system of a vehicle is sufficiently simplified such that the vehicle can be operated using substantially only a single long-range frequency band, and a second, short-range frequency band.
    Type: Application
    Filed: August 18, 2006
    Publication date: November 1, 2007
    Inventor: Abe Karem
  • Publication number: 20070253826
    Abstract: Rotor blades are pre-bent in at least one of a flap direction and a lag direction, wherein the pre-bent portion comprises at least 20-60% of the length of the blade. Preferred methods include analyzing the rotor dynamic behavior using computational methods, deciding on the operational case (rotor lift load, forward speed, etc.) in which the loads and vibration reductions are desired, and using the computed results to decide on an amount of pre-bending of the unloaded blade so that it comes closer to the feather axis under load. Another class of preferred methods models the bending of a first blade in flight loading conditions, and then designs a second blade having a pre-bend in approximately an equal in magnitude and opposite in direction to the bending. It is contemplated that such “pre-bent” blades can significantly reduce rotor loads and vibration levels of rotor craft equipped with semi-rigid or rigid rotors.
    Type: Application
    Filed: August 15, 2006
    Publication date: November 1, 2007
    Inventor: Abe Karem