Patents by Inventor Abel Seleshi Mengistu

Abel Seleshi Mengistu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240094827
    Abstract: Systems and techniques are described for robust radar-based gesture-recognition. A radar system detects radar-based gestures on behalf of application subscribers. A state machine transitions between multiple states based on inertial sensor data. A no-gating state enables the radar system to output radar-based gestures to application subscribers. The state machine also includes a soft-gating state that prevents the radar system from outputting the radar-based gestures to the application subscribers. A hard-gating state prevents the radar system from detecting radar-based gestures altogether. The techniques and systems enable the radar system to determine when not to perform gesture-recognition, enabling user equipment to automatically reconfigure the radar system to meet user demand. By so doing, the techniques conserve power, improve accuracy, or reduce latency relative to many common techniques and systems for radar-based gesture-recognition.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Applicant: Google LLC
    Inventors: Jung Ook Hong, Patrick M. Amihood, John David Jacobs, Abel Seleshi Mengistu, Leonardo Giusti, Vignesh Sachidanandam, Devon James O'Reilley Stern, Ivan Poupyrev, Brandon Barbello, Tyler Reed Kugler, Johan Prag, Artur Tsurkan, Alok Chandel, Lucas Dupin Moreira Costa, Selim Flavio Cinek
  • Patent number: 11868537
    Abstract: Systems and techniques are described for robust radar-based gesture-recognition. A radar system detects radar-based gestures on behalf of application subscribers. A state machine transitions between multiple states based on inertial sensor data. A no-gating state enables the radar system to output radar-based gestures to application subscribers. The state machine also includes a soft-gating state that prevents the radar system from outputting the radar-based gestures to the application subscribers. A hard-gating state prevents the radar system from detecting radar-based gestures altogether. The techniques and systems enable the radar system to determine when not to perform gesture-recognition, enabling user equipment to automatically reconfigure the radar system to meet user demand. By so doing, the techniques conserve power, improve accuracy, or reduce latency relative to many common techniques and systems for radar-based gesture-recognition.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: January 9, 2024
    Inventors: Jung Ook Hong, Patrick M. Amihood, John David Jacobs, Abel Seleshi Mengistu, Leonardo Giusti, Vignesh Sachidanandam, Devon James O'Reilley Stern, Ivan Poupyrev, Brandon Barbello, Tyler Reed Kugler, Johan Prag, Artur Tsurkan, Alok Chandel, Lucas Dupin Moreira Costa, Selim Flavio Cinek
  • Publication number: 20220413620
    Abstract: This document describes techniques and systems for radar-based gesture-recognition with context-sensitive gating and other context-sensitive controls. Sensor data from a proximity sensor and/or a movement sensor produces a context of a user equipment. The techniques and systems enable the user equipment to recognize contexts when a radar system can be unreliable and should not be used for gesture-recognition, enabling the user equipment to automatically disable or “gate” the output from the radar system according to context. The user equipment prevents the radar system from transitioning to a high-power state to perform gesture-recognition in contexts where radar data detected by the radar system is likely due to unintentional input. By so doing, the techniques conserve power, improve accuracy, or reduce latency relative to many common techniques and systems for radar-based gesture-recognition.
    Type: Application
    Filed: August 25, 2022
    Publication date: December 29, 2022
    Applicant: Google LLC
    Inventors: Vignesh Sachidanandam, Ivan Poupyrev, Leonardo Giusti, Devon James O'Reilley Stern, Jung Ook Hong, Patrick M. Amihood, John David Jacobs, Abel Seleshi Mengistu, Brandon Barbello, Tyler Reed Kugler
  • Publication number: 20220326367
    Abstract: Techniques and apparatuses are described that implement a smart-device-based radar system capable of performing gesture recognition using a space time neural network. The space time neural network employs machine learning to recognize a user's gesture based on complex radar data. The space time neural network is implemented using a multi-stage machine-learning architecture, which enables the radar system to conserve power and recognize the user's gesture in real time (e.g., as the gesture is performed). The space time neural network is also adaptable and can be expanded to recognize multiple types of gestures, such as a swipe gesture and a reach gesture, without significantly increasing size, computational requirements, or latency.
    Type: Application
    Filed: October 20, 2020
    Publication date: October 13, 2022
    Applicant: Google LLC
    Inventors: Michal Matuszak, Abel Seleshi Mengistu, Nicholas Edward Gillian, Abhijit Aroon Shah
  • Patent number: 11467672
    Abstract: This document describes techniques and systems for radar-based gesture-recognition with context-sensitive gating and other context-sensitive controls. Sensor data from a proximity sensor (108) and/or a movement sensor (108) produces a context of a user equipment (102). The techniques and systems enable the user equipment (102) to recognize contexts when a radar system (104) can be unreliable and should not be used for gesture-recognition, enabling the user equipment (102) to automatically disable or “gate” the output from the radar system (104) according to context. The user equipment (102) prevents the radar system (104) from transitioning to a high-power state (1910) to perform gesture-recognition in contexts where radar data detected by the radar system (104) is likely due to unintentional input. By so doing, the techniques conserve power, improve accuracy, or reduce latency relative to many common techniques and systems for radar-based gesture-recognition.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: October 11, 2022
    Assignee: Google LLC
    Inventors: Vignesh Sachidanandam, Ivan Poupyrev, Leonardo Giusti, Devon James O'Reilley Stern, Jung Ook Hong, Patrick M. Amihood, John David Jacobs, Abel Seleshi Mengistu, Brandon Barbello, Tyler Reed Kugler
  • Publication number: 20220261084
    Abstract: Systems and techniques are described for robust radar-based gesture-recognition. A radar system detects radar-based gestures on behalf of application subscribers. A state machine transitions between multiple states based on inertial sensor data. A no-gating state enables the radar system to output radar-based gestures to application subscribers. The state machine also includes a soft-gating state that prevents the radar system from outputting the radar-based gestures to the application subscribers. A hard-gating state prevents the radar system from detecting radar-based gestures altogether. The techniques and systems enable the radar system to determine when not to perform gesture-recognition, enabling user equipment to automatically reconfigure the radar system to meet user demand. By so doing, the techniques conserve power, improve accuracy, or reduce latency relative to many common techniques and systems for radar-based gesture-recognition.
    Type: Application
    Filed: April 29, 2022
    Publication date: August 18, 2022
    Applicant: Google LLC
    Inventors: Jung Ook Hong, Patrick M. Amihood, John David Jacobs, Abel Seleshi Mengistu, Leonardo Giusti, Vignesh Sachidanandam, Devon James O'Reilley Stern, Ivan Poupyrev, Brandon Barbello, Tyler Reed Kugler, Johan Prag, Artur Tsurkan, Alok Chandel, Lucas Dupin Moreira Costa, Selim Flavio Cinek
  • Patent number: 11385722
    Abstract: Systems and techniques are described for robust radar-based gesture-recognition. A radar system (104) detects radar-based gestures on behalf of application subscribers. A state machine (2000) transitions between multiple states based on inertial sensor data. A no-gating state (2002) enables the radar system (104) to output radar-based gestures to application subscribers. The state machine (2000) also includes a soft-gating state (2004) that prevents the radar system (104) from outputting the radar-based gestures to the application subscribers. A hard-gating state (2006) prevents the radar system (104) from detecting radar-based gestures altogether. The techniques and systems enable the radar system (104) to determine when not to perform gesture-recognition, enabling user equipment (102) to automatically reconfigure the radar system (104) to meet user demand.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: July 12, 2022
    Assignee: Google LLC
    Inventors: Jung Ook Hong, Patrick M. Amihood, John David Jacobs, Abel Seleshi Mengistu, Leonardo Giusti, Vignesh Sachidanandam, Devon James O'Reilley Stern, Ivan Poupyrev, Brandon Barbello, Tyler Reed Kugler, Johan Prag, Artur Tsurkan, Alok Chandel, Lucas Dupin Moreira Costa, Selim Flavio Cinek
  • Publication number: 20210342008
    Abstract: This document describes techniques and systems for radar-based gesture-recognition with context-sensitive gating and other context-sensitive controls. Sensor data from a proximity sensor (108) and/or a movement sensor (108) produces a context of a user equipment (102). The techniques and systems enable the user equipment (102) to recognize contexts when a radar system (104) can be unreliable and should not be used for gesture-recognition, enabling the user equipment (102) to automatically disable or “gate” the output from the radar system (104) according to context. The user equipment (102) prevents the radar system (104) from transitioning to a high-power state (1910) to perform gesture-recognition in contexts where radar data detected by the radar system (104) is likely due to unintentional input. By so doing, the techniques conserve power, improve accuracy, or reduce latency relative to many common techniques and systems for radar-based gesture-recognition.
    Type: Application
    Filed: September 27, 2019
    Publication date: November 4, 2021
    Applicant: Google LLC
    Inventors: Vignesh Sachidanandam, Ivan Poupyrev, Leonardo Giusti, Devon James O'Reilley Stern, Jung Ook Hong, Patrick M. Amihood, John David Jacobs, Abel Seleshi Mengistu, Brandon Barbello, Tyler Reed Kugler
  • Publication number: 20210026454
    Abstract: Systems and techniques are described for robust radar-based gesture-recognition. A radar system (104) detects radar-based gestures on behalf of application subscribers. A state machine (2000) transitions between multiple states based on inertial sensor data. A no-gating state (2002) enables the radar system (104) to output radar-based gestures to application subscribers. The state machine (2000) also includes a soft-gating state (2004) that prevents the radar system (104) from outputting the radar-based gestures to the application subscribers. A hard-gating state (2006) prevents the radar system (104) from detecting radar-based gestures altogether. The techniques and systems enable the radar system (104) to determine when not to perform gesture-recognition, enabling user equipment (102) to automatically reconfigure the radar system (104) to meet user demand.
    Type: Application
    Filed: May 28, 2020
    Publication date: January 28, 2021
    Applicant: Google LLC
    Inventors: Jung Ook Hong, Patrick M. Amihood, John David Jacobs, Abel Seleshi Mengistu, Leonardo Giusti, Vignesh Sachidanandam, Devon James O'Reilley Stern, Ivan Poupyrev, Brandon Barbello, Tyler Reed Kugler, Johan Prag, Artur Tsurkan, Alok Chandel, Lucas Dupin Moreira Costa, Selim Flavio Cinek