Patents by Inventor Abhijeet Dubhashi

Abhijeet Dubhashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11864904
    Abstract: Systems and methods for measuring the magnetic fields generated by renal nerves before and/or after neuromodulation therapy are disclosed herein. One method for measuring the magnetic field of target nerves during a neuromodulation procedure includes positioning a neuromodulation catheter at a target site within a renal blood vessel of a human patient near the target nerves, and detecting a measurement of the magnetic field generated by the target nerves. The method can further include determining, based on the measurement of the magnetic field, a location of the target nerves, a location of ablation at the target nerves, and/or a percentage the target nerves were ablated by delivered neuromodulation energy.
    Type: Grant
    Filed: January 12, 2022
    Date of Patent: January 9, 2024
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventors: Abhijeet Dubhashi, Douglas Hettrick, Guo Xu
  • Publication number: 20230263443
    Abstract: Example devices, systems, and techniques predict renal denervation efficacy for reducing hypertension in a patient based on pulse information. For example, a system may include processing circuitry configured to obtain pulse information representative of pulses from both wrists of a patient, obtain a plurality of values representative of respective patient metrics for the patient, and apply the pulse information and the plurality of values to a deep learning model trained to represent a relationship of the pulse information and the patient metrics to an efficacy of renal denervation in reducing hypertension. In some examples, responsive to applying the pulse information and the plurality of values to the deep learning model, the processing circuitry obtains, from the deep learning model, a score indicative of renal denervation efficacy in reducing hypertension for the patient, and generates a graphical user interface comprising a graphical representation of the score for the patient.
    Type: Application
    Filed: April 27, 2023
    Publication date: August 24, 2023
    Inventor: Abhijeet Dubhashi
  • Patent number: 11672456
    Abstract: Example devices, systems, and techniques predict renal denervation efficacy for reducing hypertension in a patient based on pulse information. For example, a system may include processing circuitry configured to obtain pulse information representative of pulses from both wrists of a patient, obtain a plurality of values representative of respective patient metrics for the patient, and apply the pulse information and the plurality of values to a deep learning model trained to represent a relationship of the pulse information and the patient metrics to an efficacy of renal denervation in reducing hypertension. In some examples, responsive to applying the pulse information and the plurality of values to the deep learning model, the processing circuitry obtains, from the deep learning model, a score indicative of renal denervation efficacy in reducing hypertension for the patient, and generates a graphical user interface comprising a graphical representation of the score for the patient.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: June 13, 2023
    Assignee: Medtronic Ireland Manufacturing Unlimited Company
    Inventor: Abhijeet Dubhashi
  • Publication number: 20220133210
    Abstract: Systems and methods for measuring the magnetic fields generated by renal nerves before and/or after neuromodulation therapy are disclosed herein. One method for measuring the magnetic field of target nerves during a neuromodulation procedure includes positioning a neuromodulation catheter at a target site within a renal blood vessel of a human patient near the target nerves, and detecting a measurement of the magnetic field generated by the target nerves. The method can further include determining, based on the measurement of the magnetic field, a location of the target nerves, a location of ablation at the target nerves, and/or a percentage the target nerves were ablated by delivered neuromodulation energy.
    Type: Application
    Filed: January 12, 2022
    Publication date: May 5, 2022
    Inventors: Abhijeet Dubhashi, Douglas Hettrick, Guo Xu
  • Patent number: 11253189
    Abstract: Systems and methods for measuring the magnetic fields generated by renal nerves before and/or after neuromodulation therapy are disclosed herein. One method for measuring the magnetic field of target nerves during a neuromodulation procedure includes positioning a neuromodulation catheter at a target site within a renal blood vessel of a human patient near the target nerves, and detecting a measurement of the magnetic field generated by the target nerves. The method can further include determining, based on the measurement of the magnetic field, a location of the target nerves, a location of ablation at the target nerves, and/or a percentage the target nerves were ablated by delivered neuromodulation energy.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: February 22, 2022
    Assignee: MEDTRONIC ARDIAN LUXEMBOURG S.A.R.L.
    Inventors: Abhijeet Dubhashi, Douglas Hettrick, Guo Xu
  • Publication number: 20190328302
    Abstract: Example devices, systems, and techniques predict renal denervation efficacy for reducing hypertension in a patient based on pulse information. For example, a system may include processing circuitry configured to obtain pulse information representative of pulses from both wrists of a patient, obtain a plurality of values representative of respective patient metrics for the patient, and apply the pulse information and the plurality of values to a deep learning model trained to represent a relationship of the pulse information and the patient metrics to an efficacy of renal denervation in reducing hypertension. In some examples, responsive to applying the pulse information and the plurality of values to the deep learning model, the processing circuitry obtains, from the deep learning model, a score indicative of renal denervation efficacy in reducing hypertension for the patient, and generates a graphical user interface comprising a graphical representation of the score for the patient.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 31, 2019
    Inventor: Abhijeet Dubhashi
  • Publication number: 20190223777
    Abstract: Systems and methods for measuring the magnetic fields generated by renal nerves before and/or after neuromodulation therapy are disclosed herein. One method for measuring the magnetic field of target nerves during a neuromodulation procedure includes positioning a neuromodulation catheter at a target site within a renal blood vessel of a human patient near the target nerves, and detecting a measurement of the magnetic field generated by the target nerves. The method can further include determining, based on the measurement of the magnetic field, a location of the target nerves, a location of ablation at the target nerves, and/or a percentage the target nerves were ablated by delivered neuromodulation energy.
    Type: Application
    Filed: April 20, 2018
    Publication date: July 25, 2019
    Inventors: Abhijeet Dubhashi, Douglas Hettrick, Guo Xu