Patents by Inventor Abhijeet P. Borole

Abhijeet P. Borole has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10760169
    Abstract: A method for the substantially complete conversion of hydrogenous matter to higher value product, the method comprising: (i) subjecting the hydrogenous matter to a substantially complete deconstruction process in which an aqueous phase containing a multiplicity of deconstructed compounds is produced; and (ii) contacting the aqueous phase with an anode of a microbial electrolysis cell, the anode containing a community of microbes thereon which oxidatively degrade one or more of the oxygenated organic compounds in the aqueous phase to produce protons and free electrons at the anode, wherein the protons and free electrons are transported to the cathode to produce hydrogen gas or a valuable reduced organic compound at the cathode upon application of a suitable cell potential across the anode and cathode. The invention is also directed to an apparatus for practicing the method described above.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: September 1, 2020
    Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation
    Inventors: Abhijeet P. Borole, Alex James Lewis
  • Publication number: 20170362719
    Abstract: A method for the substantially complete conversion of hydrogenous matter to higher value product, the method comprising: (i) subjecting the hydrogenous matter to a substantially complete deconstruction process in which an aqueous phase containing a multiplicity of deconstructed compounds is produced; and (ii) contacting the aqueous phase with an anode of a microbial electrolysis cell, said anode containing a community of microbes thereon which oxidatively degrade one or more of the oxygenated organic compounds in the aqueous phase to produce protons and free electrons at the anode, wherein the protons and free electrons are transported to the cathode to produce hydrogen gas or a valuable reduced organic compound at the cathode upon application of a suitable cell potential across the anode and cathode. The invention is also directed to an apparatus for practicing the method described above.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 21, 2017
    Inventors: Abhijeet P. BOROLE, Alex James LEWIS
  • Patent number: 8597513
    Abstract: The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: December 3, 2013
    Assignee: UT-Battelle, LLC
    Inventors: Abhijeet P. Borole, Constantino Tsouris
  • Patent number: 8192854
    Abstract: The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: June 5, 2012
    Assignee: UT-Battelle, LLC
    Inventor: Abhijeet P. Borole
  • Patent number: 7998724
    Abstract: A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: August 16, 2011
    Assignee: UT-Battelle LLC
    Inventors: Abhijeet P. Borole, Choo Y. Hamilton
  • Publication number: 20100252443
    Abstract: The present invention relates to a method for producing electrical energy or hydrogen gas from a gas stream containing one or more gaseous compounds that are oxidatively degradable by microbes, the method comprising contacting the gas stream with an anode of a bioelectrochemical device, said anode containing said microbes which oxidatively degrade one or more of said gaseous compounds while producing electrical energy or hydrogen gas by said oxidative degradation, wherein: (i) said anode is sufficiently porous such that gas is permitted to flow therethrough, (ii) said anode contains on its surface and/or interior portions a proton-conducting medium, and (iii) said anode is in electrical communication with a cathode of the bioelectrochemical device. The invention is also directed to a bioelectrochemical device (e.g., microbial fuel cell) configured to accomplish the above method.
    Type: Application
    Filed: December 1, 2009
    Publication date: October 7, 2010
    Applicant: UT-BATTELLE, LLC
    Inventor: Abhijeet P. Borole
  • Publication number: 20100200495
    Abstract: The present invention is directed to a method for cleansing fuel processing effluent containing carbonaceous compounds and inorganic salts, the method comprising contacting the fuel processing effluent with an anode of a microbial fuel ell, the anode containing microbes thereon which oxidatively degrade one or more of the carbonaceous compounds while producing electrical energy from the oxidative degradation, and directing the produced electrical energy to drive an electrosorption mechanism that operates to reduce the concentration of one or more inorganic salts in the fuel processing effluent, wherein the anode is in electrical communication with a cathode of the microbial fuel cell. The invention is also directed to an apparatus for practicing the method.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Applicant: UT-BATTELLE, LLC
    Inventors: Abhijeet P. Borole, Constantino Tsouris
  • Publication number: 20100203359
    Abstract: The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.
    Type: Application
    Filed: February 6, 2009
    Publication date: August 12, 2010
    Applicant: UT-BATTELLE, LLC
    Inventor: Abhijeet P. Borole
  • Publication number: 20100092804
    Abstract: The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.
    Type: Application
    Filed: October 15, 2008
    Publication date: April 15, 2010
    Applicant: UT-BATTELLE, LLC
    Inventor: Abhijeet P. Borole
  • Patent number: 7695834
    Abstract: The present invention relates to a method for preparing a microbial fuel cell, wherein the method includes: (i) inoculating an anodic liquid medium in contact with an anode of the microbial fuel cell with one or more types of microorganisms capable of functioning by an exoelectrogenic mechanism; (ii) establishing a biofilm of the microorganisms on and/or within the anode along with a substantial absence of planktonic forms of the microorganisms by substantial removal of the planktonic microorganisms during forced flow and recirculation conditions of the anodic liquid medium; and (iii) subjecting the microorganisms of the biofilm to a growth stage by incorporating one or more carbon-containing nutritive compounds in the anodic liquid medium during biofilm formation or after biofilm formation on the anode has been established.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: April 13, 2010
    Assignee: UT-Battelle, LLC
    Inventor: Abhijeet P. Borole
  • Publication number: 20080268525
    Abstract: A process for the removal of mercury from coal prior to combustion is disclosed. The process is based on use of microorganisms to oxidize iron, sulfur and other species binding mercury within the coal, followed by volatilization of mercury by the microorganisms. The microorganisms are from a class of iron and/or sulfur oxidizing bacteria. The process involves contacting coal with the bacteria in a batch or continuous manner. The mercury is first solubilized from the coal, followed by microbial reduction to elemental mercury, which is stripped off by sparging gas and captured by a mercury recovery unit, giving mercury-free coal. The mercury can be recovered in pure form from the sorbents via additional processing.
    Type: Application
    Filed: April 27, 2007
    Publication date: October 30, 2008
    Inventors: Abhijeet P. Borole, Choo Y. Hamilton