Patents by Inventor Abhijeet S. Bagal

Abhijeet S. Bagal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12198928
    Abstract: Exemplary semiconductor processing methods may include providing a carbon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region. The substrate may define one or more recessed features. The methods may include providing a second precursor to the processing region. The methods may include forming a plasma of the carbon-containing precursor and the second precursor in the processing region. Forming the plasma of the carbon-containing precursor and the second precursor may be performed at a plasma power of greater than or about 500 W. The methods may include depositing a carbon-containing material on the substrate. The carbon-containing material may extend within the one or more recessed features. The methods may include, subsequent depositing the carbon-containing material for a first period of time, applying a bias power while depositing the carbon-containing material for a second period of time.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: January 14, 2025
    Assignee: Applied Materials, Inc.
    Inventors: Abhijeet S. Bagal, Qian Fu
  • Publication number: 20240420948
    Abstract: Semiconductor processing methods are described that include providing a substrate to a reaction chamber, where the substrate includes substrate trenches that have a top surface and a bottom surface. A deposition gas that includes a carbon-containing gas and a nitrogen-containing gas flows into a plasma excitation region of the reaction chamber. A deposition plasma having an electron temperature less than or about 4 eV is generated from the deposition gas. The methods further include depositing a carbon-containing layer on the top surface and the bottom surface of the substrate trenches, where the as-deposited carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1. Also described are semiconductor structures that include an as-deposited carbon-containing layer on the top and bottom surface of at least a first and second trench, where the carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1.
    Type: Application
    Filed: August 27, 2024
    Publication date: December 19, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Abhijeet S. Bagal, Qian Fu, Kuan-Ting Liu, Chung Liu
  • Publication number: 20240404837
    Abstract: Methods of semiconductor processing may include providing a hydrogen-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed on a substrate support within the processing region. A layer of silicon-and-nitrogen-containing material may be disposed on the substrate. The methods may include forming plasma effluents of the hydrogen-containing precursor. The methods may include contacting the layer of silicon-and-nitrogen-containing material with plasma effluents of the hydrogen-containing precursor. The contacting may etch a portion of the layer of silicon-and-nitrogen-containing material.
    Type: Application
    Filed: May 30, 2023
    Publication date: December 5, 2024
    Applicant: Applied Materials, Inc.
    Inventors: Zhiren Luo, Jeong Hwan Kim, Qian Fu, Abhijeet S. Bagal
  • Patent number: 12125699
    Abstract: Semiconductor processing methods are described that include providing a substrate to a reaction chamber, where the substrate includes substrate trenches that have a top surface and a bottom surface. A deposition gas that includes a carbon-containing gas and a nitrogen-containing gas flows into a plasma excitation region of the reaction chamber. A deposition plasma having an electron temperature less than or about 4 eV is generated from the deposition gas. The methods further include depositing a carbon-containing layer on the top surface and the bottom surface of the substrate trenches, where the as-deposited carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1. Also described are semiconductor structures that include an as-deposited carbon-containing layer on the top and bottom surface of at least a first and second trench, where the carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: October 22, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Abhijeet S. Bagal, Qian Fu, Kuan-Ting Liu, Chung Liu
  • Publication number: 20240210995
    Abstract: A display may have a stretchable portion with hermetically sealed rigid pixel islands. A flexible interconnect region may be interposed between the hermetically sealed rigid pixel islands. The hermetically sealed rigid pixel islands may include organic light-emitting diode (OLED) pixels. A conductive cutting structure may have an undercut that causes a discontinuity in a conductive OLED layer to mitigate lateral leakage. The conductive cutting structure may also be electrically connected to a cathode for the OLED pixels and provide a cathode voltage to the cathode. First and second inorganic passivation layers may be formed over the OLED pixels. Multiple discrete portions of an organic inkjet printed layer may be interposed between the first and second inorganic passivation layers.
    Type: Application
    Filed: October 10, 2023
    Publication date: June 27, 2024
    Inventors: Prashant Mandlik, Bhadrinarayana Lalgudi Visweswaran, Mahendra Chhabra, Chia-Hao Chang, Shiyi Liu, Siddharth Harikrishna Mohan, Zhen Zhang, Han-Chieh Chang, Yi Qiao, Yue Cui, Tyler R Kakuda, Michael Vosgueritchian, Sudirukkuge T. Jinasundera, Warren S Rieutort-Louis, Tsung-Ting Tsai, Jae Won Choi, Jiun-Jye Chang, Jean-Pierre S Guillou, Rui Liu, Po-Chun Yeh, Chieh Hung Yang, Ankit Mahajan, Takahide Ishii, Pei-Ling Lin, Pei Yin, Gwanwoo Park, Markus Einzinger, Martijn Kuik, Abhijeet S Bagal, Kyounghwan Kim, Jonathan H Beck, Chiang-Jen Hsiao, Chih-Hao Kung, Chih-Lei Chen, Chih-Yu Chung, Chuan-Jung Lin, Jung Yen Huang, Kuan-Chi Chen, Shinya Ono, Wei Jung Hsieh, Wei-Chieh Lin, Yi-Pu Chen, Yuan Ming Chiang, An-Di Sheu, Chi-Wei Chou, Chin-Fu Lee, Ko-Wei Chen, Kuan-Yi Lee, Weixin Li, Shin-Hung Yeh, Shyuan Yang, Themistoklis Afentakis, Asli Sirman, Baolin Tian, Han Liu
  • Publication number: 20230129550
    Abstract: Exemplary semiconductor processing methods may include providing a carbon-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region. The substrate may define one or more recessed features. The methods may include providing a second precursor to the processing region. The methods may include forming a plasma of the carbon-containing precursor and the second precursor in the processing region. Forming the plasma of the carbon-containing precursor and the second precursor may be performed at a plasma power of greater than or about 500 W. The methods may include depositing a carbon-containing material on the substrate. The carbon-containing material may extend within the one or more recessed features. The methods may include, subsequent depositing the carbon-containing material for a first period of time, applying a bias power while depositing the carbon-containing material for a second period of time.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 27, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Abhijeet S. Bagal, Qian Fu
  • Publication number: 20220415648
    Abstract: Semiconductor processing methods are described that include providing a substrate to a reaction chamber, where the substrate includes substrate trenches that have a top surface and a bottom surface. A deposition gas that includes a carbon-containing gas and a nitrogen-containing gas flows into a plasma excitation region of the reaction chamber. A deposition plasma having an electron temperature less than or about 4 eV is generated from the deposition gas. The methods further include depositing a carbon-containing layer on the top surface and the bottom surface of the substrate trenches, where the as-deposited carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1. Also described are semiconductor structures that include an as-deposited carbon-containing layer on the top and bottom surface of at least a first and second trench, where the carbon-containing layer has a top surface-to-bottom surface thickness ratio of greater than or about 3:1.
    Type: Application
    Filed: June 28, 2021
    Publication date: December 29, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Abhijeet S. Bagal, Qian Fu, Kuan-Ting Liu, Chung Liu