Patents by Inventor Abhijit MALLICK

Abhijit MALLICK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11276573
    Abstract: An exemplary method may include delivering a boron-containing precursor to a processing region of a semiconductor processing chamber. The method may also include forming a plasma within the processing region of the semiconductor processing chamber from the boron-containing precursor. The method may further include depositing a boron-containing material on a substrate disposed within the processing region of the semiconductor processing chamber. The boron-containing material may include greater than 50% of boron. In some embodiments, the boron-containing material may include substantially all boron. In some embodiments, the method may further include delivering at least one of a germanium-containing precursor, an oxygen-containing precursor, a silicon-containing precursor, a phosphorus-containing precursor, a carbon-containing precursor, and/or a nitrogen-containing precursor to the processing region of the semiconductor processing chamber.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: March 15, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Bo Qi, Zeqing Shen, Abhijit Mallick
  • Patent number: 11227797
    Abstract: Embodiments described herein relate to methods of seam-free gapfilling and seam healing that can be carried out using a chamber operable to maintain a supra-atmospheric pressure (e.g., a pressure greater than atmospheric pressure). One embodiment includes positioning a substrate having one or more features formed in a surface of the substrate in a process chamber and exposing the one or more features of the substrate to at least one precursor at a pressure of about 1 bar or greater. Another embodiment includes positioning a substrate having one or more features formed in a surface of the substrate in a process chamber. Each of the one or more features has seams of a material. The seams of the material are exposed to at least one precursor at a pressure of about 1 bar or greater.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: January 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Shishi Jiang, Kurtis Leschkies, Pramit Manna, Abhijit Mallick
  • Publication number: 20210175078
    Abstract: An exemplary method may include delivering a boron-containing precursor to a processing region of a semiconductor processing chamber. The method may also include forming a plasma within the processing region of the semiconductor processing chamber from the boron-containing precursor. The method may further include depositing a boron-containing material on a substrate disposed within the processing region of the semiconductor processing chamber. The boron-containing material may include greater than 50% of boron. In some embodiments, the boron-containing material may include substantially all boron. In some embodiments, the method may further include delivering at least one of a germanium-containing precursor, an oxygen-containing precursor, a silicon-containing precursor, a phosphorus-containing precursor, a carbon-containing precursor, and/or a nitrogen-containing precursor to the processing region of the semiconductor processing chamber.
    Type: Application
    Filed: December 4, 2019
    Publication date: June 10, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Bo Qi, Zeqing Shen, Abhijit Mallick
  • Publication number: 20200161178
    Abstract: Embodiments described herein relate to methods of seam-free gapfilling and seam healing that can be carried out using a chamber operable to maintain a supra-atmospheric pressure (e.g., a pressure greater than atmospheric pressure). One embodiment includes positioning a substrate having one or more features formed in a surface of the substrate in a process chamber and exposing the one or more features of the substrate to at least one precursor at a pressure of about 1 bar or greater. Another embodiment includes positioning a substrate having one or more features formed in a surface of the substrate in a process chamber. Each of the one or more features has seams of a material. The seams of the material are exposed to at least one precursor at a pressure of about 1 bar or greater.
    Type: Application
    Filed: November 6, 2019
    Publication date: May 21, 2020
    Inventors: Shishi JIANG, Kurtis LESCHKIES, Pramit MANNA, Abhijit MALLICK
  • Publication number: 20200051994
    Abstract: A method of forming a memory device including a plurality of nonvolatile memory cells is provided. The method includes forming a hole in a stack of alternating insulator layers and memory cell layers. The stack extends from a bottom to a top, and the stack includes a plurality of insulator layers and plurality of memory cell layers. The method further includes depositing a first portion of a silicon channel layer. The first portion of the silicon channel layer extends from the bottom of the stack to the top of the stack. The method further includes adding a dopant layer over the first portion of the silicon channel layer. The dopant layer includes a first dopant. The method further includes depositing a second portion of the silicon channel layer. The second portion of the silicon channel layer extends from the bottom of the stack to the top of the stack.
    Type: Application
    Filed: October 3, 2018
    Publication date: February 13, 2020
    Inventors: Vinod Robert PURAYATH, Priyadarshi PANDA, Abhijit MALLICK, Srinivas GANDIKOTA
  • Publication number: 20180148833
    Abstract: In some embodiments, a method of processing a substrate disposed within a processing volume of a hot wire chemical vapor deposition (HWCVD) process chamber, includes: (a) providing a silicon containing precursor gas into the processing volume, the silicon containing precursor gas is provided into the processing volume from an inlet located a first distance above a surface of the substrate; (b) breaking hydrogen-silicon bonds within molecules of the silicon containing precursor via introduction of hydrogen radicals to the processing volume to deposit a flowable silicon containing layer atop the substrate, wherein the hydrogen radicals are formed by flowing a hydrogen containing gas over a plurality of wires disposed within the processing volume above the substrate and the inlet.
    Type: Application
    Filed: November 1, 2017
    Publication date: May 31, 2018
    Inventors: Sukti CHATTERJEE, LANCE SCUDDER, ERIC H. LIU, PRAVIN K. NARWANKAR, PRAMIT MANNA, ABHIJIT MALLICK
  • Publication number: 20180148832
    Abstract: In some embodiments, a method of processing a substrate disposed within a processing volume of a hot wire chemical vapor deposition (HWCVD) process chamber, includes: (a) providing a carbon containing precursor gas into the processing volume, the carbon containing precursor gas being provided into the processing volume from an inlet located a first distance above a surface of the substrate; (b) breaking hydrogen-carbon bonds within molecules of the carbon containing precursor via introduction of hydrogen radicals to the processing volume to deposit a flowable carbon layer atop the substrate, wherein the hydrogen radicals are formed by flowing a hydrogen containing gas over a plurality of filaments disposed within the processing volume above the substrate and the inlet.
    Type: Application
    Filed: November 1, 2017
    Publication date: May 31, 2018
    Inventors: Sukti CHATTERJEE, LANCE SCUDDER, ERIC H. LIU, PRAVIN K. NARWANKAR, PRAMIT MANNA, ABHIJIT MALLICK
  • Patent number: 9018108
    Abstract: Methods of forming a dielectric layer on a substrate are described, and may include introducing a first precursor into a remote plasma region fluidly coupled with a substrate processing region of a substrate processing chamber A plasma may be formed in the remote plasma region to produce plasma effluents. The plasma effluents may be directed into the substrate processing region. A silicon-containing precursor may be introduced into the substrate processing region, and the silicon-containing precursor may include at least one silicon-silicon bond. The plasma effluents and silicon-containing precursor may be reacted in the processing region to form a silicon-based dielectric layer that is initially flowable when formed on the substrate.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 28, 2015
    Assignee: Applied Materials, Inc.
    Inventors: Sukwon Hong, Toan Tran, Abhijit Mallick, Jingmei Liang, Nitin K. Ingle
  • Publication number: 20140213070
    Abstract: Methods of forming a dielectric layer on a substrate are described, and may include introducing a first precursor into a remote plasma region fluidly coupled with a substrate processing region of a substrate processing chamber A plasma may be formed in the remote plasma region to produce plasma effluents. The plasma effluents may be directed into the substrate processing region. A silicon-containing precursor may be introduced into the substrate processing region, and the silicon-containing precursor may include at least one silicon-silicon bond. The plasma effluents and silicon-containing precursor may be reacted in the processing region to form a silicon-based dielectric layer that is initially flowable when formed on the substrate.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 31, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Sukwon Hong, Toan Tran, Abhijit Mallick, Jingmei Liang, Nitin K. Ingle
  • Publication number: 20140091417
    Abstract: A method of depositing a low refractive index coating on a photo-active feature on a substrate comprises forming a substrate having one or more photo-active features thereon and placing the substrate in a process zone. A deposition gas is energized in a remote gas energizer, the deposition gas comprising a fluorocarbon gas and an additive gas. The remotely energized deposition gas is flowed into the process zone to deposit a low refractive index coating on the substrate.
    Type: Application
    Filed: September 28, 2013
    Publication date: April 3, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Sum-Yee Betty TANG, Martin SEAMONS, Kiran V. THADANI, Abhijit MALLICK