Patents by Inventor Abhilash Goyal

Abhilash Goyal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11841466
    Abstract: Described herein are systems and methods that detect an electromagnetic signal in a constant interference environment. In one embodiment, the electromagnetic signal is a light signal. A constant interference detector may detect false signal “hits” generated by constant interference, such as bright light saturation, from valid signals. The constant interference detector determines if there is constant interference for a time period that is greater than a time period of the valid signal. In one embodiment, if a received signal exceeds a programmable threshold value for a programmable period of time, when compared to previously stored ambient light, a control signal is generated to inform the next higher network layer of a sudden change in ambient light. This control signal can be used to either discard the present return or process the signal in a different way. A constant interference detector may be a component of a LIDAR system.
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: December 12, 2023
    Assignee: Velodyne Lidar USA, Inc.
    Inventors: Pravin Kumar Venkatesan, Roger Jullian Pinto, Jianghui Su, Abhilash Goyal
  • Patent number: 11774559
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: October 3, 2023
    Assignee: Velodyne Lidar USA, Inc.
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B. Etheridge, Rajesh Ramalingam Varadharajan
  • Publication number: 20230236298
    Abstract: Described herein are systems and methods that detect an electromagnetic signal in a constant interference environment. In one embodiment, the electromagnetic signal is a light signal. A constant interference detector may detect false signal “hits” generated by constant interference, such as bright light saturation, from valid signals. The constant interference detector determines if there is constant interference for a time period that is greater than a time period of the valid signal. In one embodiment, if a received signal exceeds a programmable threshold value for a programmable period of time, when compared to previously stored ambient light, a control signal is generated to inform the next higher network layer of a sudden change in ambient light. This control signal can be used to either discard the present return or process the signal in a different way. A constant interference detector may be a component of a LIDAR system.
    Type: Application
    Filed: November 7, 2022
    Publication date: July 27, 2023
    Inventors: Pravin Kumar Venkatesan, Roger Jullian Pinto, Jianghui Su, Abhilash Goyal
  • Patent number: 11493615
    Abstract: Described herein are systems and methods that detect an electromagnetic signal in a constant interference environment. In one embodiment, the electromagnetic signal is a light signal. A constant interference detector may detect false signal “hits” generated by constant interference, such as bright light saturation, from valid signals. The constant interference detector determines if there is constant interference for a time period that is greater than a time period of the valid signal. In one embodiment, if a received signal exceeds a programmable threshold value for a programmable period of time, when compared to previously stored ambient light, a control signal is generated to inform the next higher network layer of a sudden change in ambient light. This control signal can be used to either discard the present return or process the signal in a different way. A constant interference detector may be a component of a LIDAR system.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: November 8, 2022
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: Pravin Kumar Venkatesan, Roger Jullian Pinto, Jianghui Su, Abhilash Goyal
  • Publication number: 20220146642
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B. Etheridge, Rajesh Ramalingam Varadharajan
  • Patent number: 11231487
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: January 25, 2022
    Assignee: VELODYNE LIDAR USA, INC.
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B. Etheridge, Rajesh Ramalingam Varadharajan
  • Publication number: 20200144859
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 7, 2020
    Applicant: VELODYNE LIDAR, INC.
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B. Etheridge, Rajesh Ramalingam Varadharajan
  • Publication number: 20200081104
    Abstract: Described herein are systems and methods that detect an electromagnetic signal in a constant interference environment. In one embodiment, the electromagnetic signal is a light signal. A constant interference detector may detect false signal “hits” generated by constant interference, such as bright light saturation, from valid signals. The constant interference detector determines if there is constant interference for a time period that is greater than a time period of the valid signal. In one embodiment, if a received signal exceeds a programmable threshold value for a programmable period of time, when compared to previously stored ambient light, a control signal is generated to inform the next higher network layer of a sudden change in ambient light. This control signal can be used to either discard the present return or process the signal in a different way. A constant interference detector may be a component of a LIDAR system.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Applicant: Velodyne LiDAR, Inc.
    Inventors: PRAVIN KUMAR VENKATESAN, ROGER PINTO, JIANGHUI SU, ABHILASH GOYAL
  • Patent number: 10530185
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: January 7, 2020
    Assignee: Velodyne Lidar, Inc.
    Inventors: Pravin Kumar Venkatesan, Abhilash Goyal, William B Etheridge, Rajesh Ramalingam Varadharajan
  • Publication number: 20190252916
    Abstract: Described herein are systems and methods that create a capacitive link based on a rotating cylinder capacitor. A cylindrical rotor rotates around a shaft and maintains an air gap between the cylindrical rotor and the shaft and to create one or more air gap capacitors. A first subsystem, comprising a light detection and ranging components, is coupled to the rotor. A second sub-subsystem, comprising data analysis functions, is coupled to the shaft. The first subsystem and the second subsystem are coupled via capacitive links created by the air gap capacitors. The communication signaling utilized on the capacitive links may be bi-directional and differential signaling. The first subsystem and the second subsystem may comprise a LIDAR light detection and ranging system. The second subsystem may power the first subsystem via inductive coupling.
    Type: Application
    Filed: February 15, 2018
    Publication date: August 15, 2019
    Applicant: Velodyne LiDAR, Inc.
    Inventors: PRAVIN KUMAR VENKATESAN, ABHILASH GOYAL, WILLIAM B. ETHERIDGE, RAJESH RAMALINGAM VARADHARAJAN