Patents by Inventor Abhilash J. Mayur

Abhilash J. Mayur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7129440
    Abstract: Apparatus for thermally processing a semiconductor wafer includes an array of semiconductor laser emitters arranged in plural parallel rows extending along a slow axis, plural respective cylindrical lenses overlying respective ones of the rows of laser emitters for collimating light from the respective rows along a fast axis generally perpendicular to the slow axis, a homogenizing light pipe having an input face at a first end for receiving light from the plural cylindrical lenses and an output face at an opposite end, the light pipe comprising a pair of reflective walls extending between the input and output faces and separated from one another along the direction of the slow axis, and scanning apparatus for scanning light emitted from the homogenizing light pipe across the wafer in a scanning direction parallel to the fast axis.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: October 31, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Bruce E. Adams, Dean Jennings, Abhilash J. Mayur, Vijay Parihar, Joseph M. Ranish
  • Patent number: 7109098
    Abstract: A method of forming semiconductor junctions in a semiconductor material of a workpiece includes ion implanting dopant impurities in selected regions of the semiconductor material, introducing an optical absorber material precursor gas into a chamber containing the workpiece, generating an RF oscillating toroidal plasma current in a reentrant path that includes a process zone overlying the workpiece by applying RF source power, so as to deposit a layer of an optical absorber material on the workpiece, and optically annealing the workpiece so as to activate dopant impurities in the semiconductor material.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: September 19, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Hiroji Hanawa, Biagio Gallo, Kenneth S. Collins, Kai Ma, Vijay Parihar, Dean Jennings, Abhilash J. Mayur, Amir Al-Bayati, Andrew Nguyen
  • Patent number: 7109087
    Abstract: A method of processing a substrate comprising depositing a layer comprising amorphous carbon on the substrate and then laser annealing the substrate is provided. Optionally, the layer further comprises a dopant selected from the group consisting of nitrogen, boron, phosphorus, fluorine, and combinations thereof. In one aspect, the layer comprising amorphous carbon is an anti-reflective coating and an absorber layer that absorbs electromagnetic radiation emitted by the laser and anneals a top surface layer of the substrate.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: September 19, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Luc Van Autryve, Chris D. Bencher, Dean Jennings, Haifan Liang, Abhilash J. Mayur, Mark Yam, Wendy H. Yeh, Richard A. Brough
  • Patent number: 7078302
    Abstract: In one embodiment, the invention generally provides a method for annealing a doped layer on a substrate including depositing a polycrystalline layer to a gate oxide layer and implanting the polycrystalline layer with a dopant to form a doped polycrystalline layer. The method further includes exposing the doped polycrystalline layer to a rapid thermal anneal to readily distribute the dopant throughout the polycrystalline layer. Subsequently, the method includes exposing the doped polycrystalline layer to a laser anneal to activate the dopant in an upper portion of the polycrystalline layer.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: July 18, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Yi Ma, Khaled Z. Ahmed, Kevin L. Cunningham, Robert C. McIntosh, Abhilash J. Mayur, Haifan Liang, Mark Yam, Toi Yue Becky Leung, Christopher Olsen, Shulin Wang, Majeed Foad, Gary Eugene Miner
  • Patent number: 6987240
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: January 17, 2006
    Assignee: Applied Materials, Inc.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Publication number: 20030196996
    Abstract: The thermal processing device includes a stage, a continuous wave electromagnetic radiation source, a series of lenses, a translation mechanism, a detection module, and a computer system. The stage is configured to receive a substrate thereon. The continuous wave electromagnetic radiation source is disposed adjacent the stage, and is configured to emit continuous wave electromagnetic radiation along a path towards the substrate. The series of lenses is disposed between the continuous wave electromagnetic radiation source and the stage, and are configured to condense the continuous wave electromagnetic radiation into a line of continuous wave electromagnetic radiation on a surface of the substrate. The translation mechanism is configured to translate the stage and the line of continuous wave electromagnetic radiation relative to one another. The detection module is positioned within the path, and is configured to detect continuous wave electromagnetic radiation.
    Type: Application
    Filed: December 18, 2002
    Publication date: October 23, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Dean C. Jennings, Mark Yam, Abhilash J. Mayur, Vernon Behrens, Paul A. O'Brien, Leonid M. Tertitski, Alexander Goldin
  • Publication number: 20030040130
    Abstract: A modeling method to identify optimum laser parameters for pulsed laser annealing of implanted dopants into patterned semiconductor substrates is provided. The modeling method provides the optimum range of wavelength, pulse length, and pulse shape that fully anneals the implanted regions while preserving the form and function of ancillary structures. Improved material parameters for the modeling are identified. The modeling method is used to determine an experimental verification method that does not require a fully equipped laser processing station. The model and verification are used to specify an optimum laser system that satisfies the requirements of large area processing of silicon integrated circuits. An alexandrite laser operating between 700 nm and 810 nm with a pulse length of 5 ns to 20 nS is identified for implant anneal of shallow dopants in silicon.
    Type: Application
    Filed: August 9, 2001
    Publication date: February 27, 2003
    Inventors: Abhilash J. Mayur, Mark Yam, Paul G. Carey, William Schaffer
  • Patent number: 6260894
    Abstract: A blade assembly for a mechanical wafer handling system. The assembly includes an elongated planar member having a central region, wherein the central region has a first array of openings and a second array of openings, the openings of the first array being arranged substantially symmetrically to the openings of the second array on opposing sides of a central longitudinal axis extending along the length of the planar member and passing through a center point of the central region. The openings in the first array are arranged substantially symmetrically with respect to a perpendicular axis extending along the width of the elongated planar member and passing through a center point of the central region. The openings in the second array are also arranged substantially symmetrically with respect to the perpendicular axis. The assembly also includes a wrist with a wrist upper cap and a wrist lower cap.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: July 17, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Andrew Minnick, James Wilson, Abhilash J. Mayur
  • Patent number: 6164816
    Abstract: A technique and system for tuning temperature sensor readings in a thermal processing chamber includes determining an actual temperature profile for a substrate based on measurements of the substrate. A simulated temperature profile for the substrate is calculated using a respective interim temperature correction value for one or more temperature sensors associated with the chamber. A Gaussian-like distribution for thermal contributions from multiple radiation sources in the chamber can be used to simulate the temperature profile. The simulated temperature profile and the actual temperature profile are combined to form an estimated temperature profile. A final value for each respective temperature correction value is determined using an optimization algorithm which results in the estimated temperature profile being substantially uniform across the surface of the substrate.
    Type: Grant
    Filed: August 14, 1998
    Date of Patent: December 26, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Wolfgang Aderhold, Abhilash J. Mayur, Peter A. Knoot
  • Patent number: 6151446
    Abstract: Apparatus and methods of thermally processing a substrate inside a processing chamber including a radiation source for heating the substrate are described. In one aspect, a detection system is configured to receive radiation from the substrate and to produce first and second detection system signals respectively representative of different first and second spectral portions of the received radiation. A processor is coupled to the detection system and configured to compute a measure of substrate temperature based upon the second detection system signal and to compute an indication of the relative accuracy of the computed measure of substrate temperature based upon the first detection system signal.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: November 21, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Aaron Hunter, Mark Yam, Abhilash J. Mayur