Patents by Inventor Abhilash Patangay

Abhilash Patangay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9066659
    Abstract: Patient posture information can be received, such as to indicate a change in patient posture by at least a threshold amount. A transient response signal indicative of a change in a physiological parameter can be received at multiple instances near a change in patient posture. Waveform morphology features can be extracted from a transient response signal and used to provide an indication of a cardiac status, such as a heart failure status.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: June 30, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, John D. Hatlestad, Kenneth C. Beck
  • Patent number: 9049981
    Abstract: A system and method provide heart sound tracking, including an input circuit, configured to receive heart sound information, and a heart sound recognition circuit. The heart sound recognition circuit can be coupled to the input circuit and can be configured to recognize, within a particular heart sound of a particular heart sound waveform, a first intra heart sound energy indication and a corresponding first intra heart sound time indication using the heart sound information from the particular heart sound waveform and the heart sound information from at least one other heart sound waveform. The particular heart sound can include at least a portion of one of S1, S2, S3, and S4. Further, the first intra heart sound energy indication and the corresponding first intra heart sound time indication can correspond to the at least a portion of one of S1, S2, S3, and S4, respectively.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: June 9, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko, Gerrard M. Carlson
  • Publication number: 20150126886
    Abstract: A cardiac rhythm management system provides for ambulatory monitoring of hemodynamic performance based on quantitative measurements of heart sound related parameters for diagnostic and therapeutic purposes. Monitoring of such heart sound related parameters allows the cardiac rhythm management system to determine a need for delivering a therapy and/or therapy parameter adjustments based on conditions of a heart. This monitoring also allows a physician to observe or assess the hemodynamic performance for diagnosing and making therapeutic decisions. Because the conditions of the heart may fluctuate and may deteriorate significantly between physician visits, the ambulatory monitoring, performed on a continuous or periodic basis, ensures a prompt response by the cardiac rhythm management system that may save a life, prevent hospitalization, or prevent further deterioration of the heart.
    Type: Application
    Filed: January 12, 2015
    Publication date: May 7, 2015
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko
  • Publication number: 20150065819
    Abstract: A differential or relative measurement between an orthogonal measurement vector and another measurement vector can be used to determine the location where fluid accumulation is occurring or the local change in such fluid accumulation. This can help diagnose or treat infection or hematoma or seroma at a pocket of an implanted cardiac rhythm management device, other implanted medical device, or prosthesis. It can also help diagnose or treat pulmonary edema, pneumonia, pulmonary congestion, pericardial effusion, pericarditis, pleural effusion, hemodilution, or another physiological condition.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, Kent Lee
  • Patent number: 8972008
    Abstract: A system and method provide for systolic interval analysis. In an example, an implantable device measures a cardiac impedance signal. A transformation of the cardiac impedance interval is generated. The device also measures a heart sound signal. A time interval between a point on the transformed signal of the cardiac impedance signal and a point on the heart sound signal is calculated.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko, Gerrard M. Carlson, Loell Boyce Moon
  • Patent number: 8951203
    Abstract: Systems and methods include obtaining a measure of cardiac contractility. A cardiac contractility variability is determined from the measure of cardiac contractility. Analyzing the cardiac contractility variability, an indication of cardio-vasculature health is provided.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: February 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Yi Zhang, Aaron Lewicke, Julie A. Thompson
  • Patent number: 8951205
    Abstract: A cardiac rhythm management system provides for ambulatory monitoring of hemodynamic performance based on quantitative measurements of heart sound related parameters for diagnostic and therapeutic purposes. Monitoring of such heart sound related parameters allows the cardiac rhythm management system to determine a need for delivering a therapy and/or therapy parameter adjustments based on conditions of a heart. This monitoring also allows a physician to observe or assess the hemodynamic performance for diagnosing and making therapeutic decisions. Because the conditions of the heart may fluctuate and may deteriorate significantly between physician visits, the ambulatory monitoring, performed on a continuous or periodic basis, ensures a prompt response by the cardiac rhythm management system that may save a life, prevent hospitalization, or prevent further deterioration of the heart.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: February 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko
  • Patent number: 8954138
    Abstract: A patient QRS duration can be received or determined, such as using one or more patient physiological sensors. A portion of the QRS duration can be determined, such as a right or left ventricular activation time. In an example, the right ventricular activation time can be determined by identifying an onset of a QRS complex and an R-wave peak in the QRS complex. In an example, when the QRS duration exceeds a threshold duration, and the RV activation time does not exceed a second threshold duration, an indication of a cardiac conduction dysfunction can be provided, such as for discriminating between left bundle branch block and right bundle branch block.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: February 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Barun Maskara, Shibaji Shome, Pramodsingh Hirasingh Thakur, Abhilash Patangay
  • Patent number: 8900140
    Abstract: A differential or relative measurement between an orthogonal measurement vector and another measurement vector can be used to determine the location where fluid accumulation is occurring or the local change in such fluid accumulation. This can help diagnose or treat infection or hematoma or seroma at a pocket of an implanted cardiac rhythm management device, other implanted medical device, or prosthesis. It can also help diagnose or treat pulmonary edema, pneumonia, pulmonary congestion, pericardial effusion, pericarditis, pleural effusion, hemodilution, or another physiological condition.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: December 2, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, Kent Lee
  • Patent number: 8858448
    Abstract: A device can include at least a first physiologic sensor circuit configured to provide a first physiologic signal, a second physiologic sensor circuit configured to provide a second physiologic signal, and a processor circuit. The processor circuit includes a principal component analysis circuit configured to represent data determined from the at least first and second physiologic sensor circuits as at least first and second axes, respectively, in a multidimensional space, determine one or more principal components in the multidimensional space, determine a quantitative attribute of the first and the second physiologic signals using at least one of the determined principal components or a projection of the data along the at least one determined principal component, and provide an indication of heart failure status according to the quantitative attribute to at least one of a user or a process.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 14, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, Ramesh Wariar, John D. Hatlestad, Yi Zhang
  • Patent number: 8838240
    Abstract: Systems and methods provide for sensing, during an event of tachycardia, hemodynamic signals concurrently from at least two spatially separated locations within a patient, and quantifying a spatial relationship between the hemodynamic signals. Hemodynamic stability or state of the patient during the tachycardia event is determined based at least in part on the quantified spatial relationship. One or more anti-tachycardia therapies to treat the tachycardia may be selected based at least in part on the determined stability or state of patient hemodynamics, and the selected one or more anti-tachycardia therapies may be delivered to treat the tachycardia. The hemodynamic signals may comprise at least two, or a mixed combination, of cardiac impedance signals, cardiac chamber pressure signals, arterial pressure signals, heart sounds; and acceleration signals.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: September 16, 2014
    Assignee: Cardiac Pacemakers Inc.
    Inventors: Dan Li, Krzysztof Siejko, Abhilash Patangay
  • Patent number: 8821404
    Abstract: Physiological data, such as thoracic impedance data, can be obtained over a first time window to establish a baseline, or can be used to form one or more data clusters. Additional physiological data, such as thoracic impedance test data acquired over a later time window, can be obtained and compared to the baseline or data clusters to determine an indication of worsening heart failure. In an example, a quantitative attribute of one or more data clusters can be monitored and used to provide an indication of worsening heart failure. A posture discrimination metric can be obtained, such as using the physiological data obtained over the first time window. The additional physiological data, such as can be obtained over a second time window, can be compared to the posture discrimination metric to provide a patient posture status.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: September 2, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay
  • Patent number: 8801624
    Abstract: This document discusses, among other things, a system comprising an implantable medical device (IMD) including an implantable heart sound sensor circuit configured to produce an electrical heart sound signal representative of a heart sound of a subject and a processor circuit. The processor circuit is coupled to the heart sound sensor circuit and includes a detection circuit, a heart sound feature circuit and a trending circuit. The detection circuit configured to detect a physiologic perturbation and the heart sound feature circuit is configured to identify a heart sound feature in the electrical signal. The processor circuit is configured to trigger the heart sound feature circuit in relation to a detected physiologic perturbation. The trending circuit is configured to trend the heart sound feature in relation to a recurrence of the physiologic perturbation. The processor circuit is configured to declare a change in a physiologic condition of the patient according to the trending.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Jeffrey E. Stahmann, Robert J. Sweeney
  • Patent number: 8805493
    Abstract: The health state of a subject is automatically evaluated or predicted using at least one implantable device. In varying examples, the health state is determined by sensing or receiving information about at least one physiological process having a circadian rhythm whose presence, absence, or baseline change is associated with impending disease, and comparing such rhythm to baseline circadian rhythm prediction criteria. Other chronobiological rhythms beside circadian may also be used. The baseline prediction criteria may be derived using one or more past physiological process observation of the subject or population of subjects in a non-disease health state. The prediction processing may be performed by the at least one implantable device or by an external device in communication with the implantable device. Systems and methods for invoking a therapy in response to the health state, such as to prevent or minimize the consequences of predicted impending heart failure, are also discussed.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, John D. Hatlestad, Gerard M. Carlson, Yousufali Dalal, Marina V. Brockway, Kent Lee, Richard O. Kuenzler, Carlos Haro, Krzysztof Z. Siejko, Abhilash Patangay
  • Patent number: 8801636
    Abstract: An example method includes monitoring a first posture including a first lateral decubitus posture (LDP), recording a first LDP record based on the first LDP, computing a first posture trend based on the first LDP record and determining and providing a wellness indication based on the first posture trend.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 12, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Aaron Lewicke, John D. Hatlestad, Abhilash Patangay
  • Publication number: 20140207206
    Abstract: According to a system or method, information indicative of a cardiac depolarization signal can be obtained. Information indicative of an acoustic signal from an implantable acoustic sensor included as a portion of an implantable therapy device can be obtained. A feature indicative of an R wave can be identified from the information indicative of the cardiac depolarization signal, and a feature indicative of an S2 heart sound can be identified from the information indicative of the acoustic signal. A time interval between an instant corresponding to the feature indicative of the R wave and an instant corresponding to the feature indicative of the S2 heart sound can be determined. Using information about the determined time interval, an adjusted pacing therapy parameter can be provided for use in a pacing therapy to be provided by the implantable therapy device.
    Type: Application
    Filed: March 25, 2014
    Publication date: July 24, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko, Gerrard M. Carlson, Loell Boyce Moon
  • Patent number: 8700149
    Abstract: Systolic timing intervals are measured in response to delivering pacing energy to a pacing site of a patient's heart. An estimate of a patient's acute response to cardiac resynchronization therapy (CRT) for the pacing site is determined using the measured systolic timing intervals. The estimate is compared to a threshold. The threshold preferably distinguishes between acute responsiveness and non-responsiveness to CRT for a patient population. An indication of acute responsiveness to CRT for the pacing site may be produced in response to the comparison.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 15, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Krzysztof Z. Siejko, Mohan Krishnan, Gerrard M. Carlson
  • Publication number: 20140046200
    Abstract: This document discusses, among other things, a system comprising an implantable medical device (IMD) including an implantable heart sound sensor circuit configured to produce an electrical heart sound signal representative of a heart sound of a subject and a processor circuit. The processor circuit is coupled to the heart sound sensor circuit and includes a detection circuit, a heart sound feature circuit and a trending circuit. The detection circuit configured to detect a physiologic perturbation and the heart sound feature circuit is configured to identify a heart sound feature in the electrical signal. The processor circuit is configured to trigger the heart sound feature circuit in relation to a detected physiologic perturbation. The trending circuit is configured to trend the heart sound feature in relation to a recurrence of the physiologic perturbation. The processor circuit is configured to declare a change in a physiologic condition of the patient according to the trending.
    Type: Application
    Filed: October 18, 2013
    Publication date: February 13, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Abhilash Patangay, Jeffrey E. Stahmann, Robert J. Sweeney
  • Publication number: 20140031641
    Abstract: Devices and methods for improving the sensitivity and specificity of heart failure (HF) detection are described. The devices and methods can detect a HF status such as using physiological sensor data and external biomarker assays. An apparatus can comprise ambulatory physiological sensors that can provide a first HF status indicator and a second HF status indicator to a user. An external biomarker sensor can provide an amount of a biomarker present, such as an assay for B-type natriuretic peptide (BNP), which provides information about HF status. A processor circuit can switch from a first HF detection mode to a second detection mode such as in response to the information from the biomarker sensor. The first detection mode can detect HF status using the first HF status indicator, and the second detection mode can detect HF status using the second HF status indicator. The second detection mode can have a higher specificity than the first detection mode.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, Craig Stolen, Timothy Meyer
  • Patent number: 8602996
    Abstract: Devices and methods for improving the sensitivity and specificity of heart failure (HF) detection are described. The devices and methods can detect a HF status such as using physiological sensor data and external biomarker assays. An apparatus can comprise ambulatory physiological sensors that can provide a first HF status indicator and a second HF status indicator to a user. An external biomarker sensor can provide an amount of a biomarker present, such as an assay for B-type natriuretic peptide (BNP), which provides information about HF status. A processor circuit can switch from a first HF detection mode to a second detection mode such as in response to the information from the biomarker sensor. The first detection mode can detect HF status using the first HF status indicator, and the second detection mode can detect HF status using the second HF status indicator. The second detection mode can have a higher specificity than the first detection mode.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 10, 2013
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Abhilash Patangay, Craig Stolen, Timothy Meyer