Patents by Inventor Abhinav Rao

Abhinav Rao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884004
    Abstract: Systems and methods for making it easier to remove support structures printed in conjunction with printing an object using stereolithographic additive manufacturing are disclosed. In some exemplary embodiments, one or more interfaces between the printed object and the support structures are modulated to allow for easy separation between them, in some instances even when the object and support structures are made from the same material. Various modulation techniques are disclosed, including adjusting an intensity of exposure to light at interfaces between the object and support structures, and using two materials where one material cures at two wavelength ranges and the other material only cures at one of the two wavelength ranges. Other systems and methods that allow for easy separation of part and support structure are also described.
    Type: Grant
    Filed: November 12, 2019
    Date of Patent: January 30, 2024
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Abhinav Rao, Anastasios John Hart
  • Patent number: 11752651
    Abstract: A novel cutting-edge structure and method and apparatus for manufacturing the cutting-edge structure is provided. The cutting-edge structure is comprised of naturally derived or renewable material at greater than 50% by volume fraction. In one embodiment, the naturally derived material is a cellulose nanostructure such as a cellulose nanocrystal. The cellulose nanocrystal is processed using a base or mold structure to provide a cutting edge of any shape such as linear or circular edge structures. The process includes dual cure steps to produce an optimal cutting-edge structure without shrinkage. The formed cutting-edge structure can be utilized as a razor blade as it is formed with very sharp tip and edge suitable for cutting hair. The base structure can form one or more cutting-edge structures simultaneously.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: September 12, 2023
    Assignees: The Gillette Company LLC, Massachusetts Institute of Technology
    Inventors: Neville Sonnenberg, Abhinav Rao, Anastasios John Hart, Paul Kitchen
  • Patent number: 11642806
    Abstract: A novel cutting-edge structure and method and apparatus for manufacturing the cutting-edge structure is provided. The cutting-edge structure is comprised of naturally derived or renewable material at greater than 50% by volume fraction. In one embodiment, the naturally derived material is a cellulose nanostructure such as a cellulose nanocrystal. The cellulose nanocrystal is processed using a base or mold structure to provide a cutting edge of any shape such as linear or circular edge structures. The process includes dual cure steps to produce an optimal cutting-edge structure without shrinkage. The formed cutting-edge structure can be utilized as a razor blade as it is formed with very sharp tip and edge suitable for cutting hair. The base structure can form one or more cutting-edge structures simultaneously.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: May 9, 2023
    Assignees: The Gillette Company LLC, Massachusetts Institute of Technology
    Inventors: Neville Sonnenberg, Abhinav Rao, Anastasios John Hart, Paul Kitchen
  • Patent number: 11458645
    Abstract: A novel cutting-edge structure and method and apparatus for manufacturing the cutting-edge structure is provided. The cutting-edge structure is comprised of naturally derived or renewable material at greater than 50% by volume fraction. In one embodiment, the naturally derived material is a cellulose nanostructure such as a cellulose nanocrystal. The cellulose nanocrystal is processed using a base or mold structure to provide a cutting edge of any shape such as linear or circular edge structures. The process includes dual cure steps to produce an optimal cutting-edge structure without shrinkage. The formed cutting-edge structure can be utilized as a razor blade as it is formed with very sharp tip and edge suitable for cutting hair. The base structure can form one or more cutting-edge structures simultaneously.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: October 4, 2022
    Assignee: The Gillette Company LLC
    Inventors: Neville Sonnenberg, Abhinav Rao, Anastasios John Hart, Paul Kitchen
  • Publication number: 20220040915
    Abstract: Systems and methods for making it easier to remove support structures printed in conjunction with printing an object using stereolithographic additive manufacturing are disclosed. In some exemplary embodiments, one or more interfaces between the printed object and the support structures are modulated to allow for easy separation between them, in some instances even when the object and support structures are made from the same material. Various modulation techniques are disclosed, including adjusting an intensity of exposure to light at interfaces between the object and support structures, and using two materials where one material cures at two wavelength ranges and the other material only cures at one of the two wavelength ranges. Other systems and methods that allow for easy separation of part and support structure are also described.
    Type: Application
    Filed: November 12, 2019
    Publication date: February 10, 2022
    Inventors: Abhinav Rao, Anastasios John Hart
  • Publication number: 20200189131
    Abstract: A novel cutting-edge structure and method and apparatus for manufacturing the cutting-edge structure is provided. The cutting-edge structure is comprised of naturally derived or renewable material at greater than 50% by volume fraction. In one embodiment, the naturally derived material is a cellulose nanostructure such as a cellulose nanocrystal. The cellulose nanocrystal is processed using a base or mold structure to provide a cutting edge of any shape such as linear or circular edge structures. The process includes dual cure steps to produce an optimal cutting-edge structure without shrinkage. The formed cutting-edge structure can be utilized as a razor blade as it is formed with very sharp tip and edge suitable for cutting hair. The base structure can form one or more cutting-edge structures simultaneously.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 18, 2020
    Inventors: Neville Sonnenberg, Abhinav Rao, Anastasios John Hart, Paul Kitchen
  • Publication number: 20200189138
    Abstract: A novel cutting-edge structure and method and apparatus for manufacturing the cutting-edge structure is provided. The cutting-edge structure is comprised of naturally derived or renewable material at greater than 50% by volume fraction. In one embodiment, the naturally derived material is a cellulose nanostructure such as a cellulose nanocrystal. The cellulose nanocrystal is processed using a base or mold structure to provide a cutting edge of any shape such as linear or circular edge structures. The process includes dual cure steps to produce an optimal cutting-edge structure without shrinkage. The formed cutting-edge structure can be utilized as a razor blade as it is formed with very sharp tip and edge suitable for cutting hair. The base structure can form one or more cutting-edge structures simultaneously.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 18, 2020
    Inventors: Neville Sonnenberg, Abhinav Rao, Anastasios John Hart, Paul Kitchen
  • Publication number: 20200190268
    Abstract: Methods, systems, and devices for synthesis, mechanics, and direct-write additive manufacturing of cellulose nanocrystal (CNC) composites that exhibit characteristics of high-performance structural materials are provided. The methods, systems, and devices allow for formulation, processing, and bulk fabrication of highly-filled nanocomposites having high hardness and toughness. In some embodiments, a precursor that includes a nanomaterial and one or more monomers is formulated and passed through an extruder to form a physical gel. The physical gel can undergo a dual cure process that includes an initial UV cure and a subsequent thermal cure to crosslink the polymer with the CNC to form the highly-filled nanocomposite. The CNC composite can then be used in the manufacturing process. In some embodiments, the interfacial mechanics and fracture characteristics of the composite can be tuned to improve the mechanical properties of the composite.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 18, 2020
    Inventors: Abhinav Rao, Anastasios John Hart
  • Publication number: 20200189137
    Abstract: A novel cutting-edge structure and method and apparatus for manufacturing the cutting-edge structure is provided. The cutting-edge structure is comprised of naturally derived or renewable material at greater than 50% by volume fraction. In one embodiment, the naturally derived material is a cellulose nanostructure such as a cellulose nanocrystal. The cellulose nanocrystal is processed using a base or mold structure to provide a cutting edge of any shape such as linear or circular edge structures. The process includes dual cure steps to produce an optimal cutting-edge structure without shrinkage. The formed cutting-edge structure can be utilized as a razor blade as it is formed with very sharp tip and edge suitable for cutting hair. The base structure can form one or more cutting-edge structures simultaneously.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 18, 2020
    Inventors: Neville Sonnenberg, Abhinav Rao, Anastasios John Hart, Paul Kitchen