Patents by Inventor Abhishek Kesarwani

Abhishek Kesarwani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11017848
    Abstract: Embodiments herein provide a Static Random-Access Memory (SRAM) system with a delay tuning circuitry and a delay control circuitry and a method thereof. Delay tuning circuitry in the SRAM system may provide a tuning of reset time in the generation of an internal clock by introducing a delay. The delay is introduced according to a process state of periphery circuitry in the SRAM. A delay control circuitry provides a control over delay in reset time of the internal clock by varying a discharge rate for each of a Dummy Bit Line (DBL) circuitry and Complementary Bit Line Circuitry (CDBL), by connecting a stack of NMOS transistors over discharge NMOS transistors.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: May 25, 2021
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Ambuj Jain, Akash Kumar Gupta, Manish Chandra Joshi, Parvinder Kumar Rana, Abhishek Kesarwani
  • Publication number: 20210118494
    Abstract: Embodiments herein provide a Static Random-Access Memory (SRAM) system with a delay tuning circuitry and a delay control circuitry and a method thereof. Delay tuning circuitry in the SRAM system may provide a tuning of reset time in the generation of an internal clock by introducing a delay. The delay is introduced according to a process state of periphery circuitry in the SRAM. A delay control circuitry provides a control over delay in reset time of the internal clock by varying a discharge rate for each of a Dummy Bit Line (DBL) circuitry and Complementary Bit Line Circuitry (CDBL), by connecting a stack of NMOS transistors over discharge NMOS transistors.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 22, 2021
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Ambuj JAIN, Akash Kumar Gupta, Manish Chandra Joshi, Parvinder Kumar Rana, Abhishek Kesarwani
  • Patent number: 10672443
    Abstract: A fin-Field Effect Transistor based system on chip (SoC) memory is provided and includes a control block, first logic gates, and row decoder blocks. The control block includes a clock generator circuit that generates an internal clock signal, and a global driver circuit coupled to the clock generator circuit that drives a global clock signal. Each row decoder block includes a second logic gate that receives higher order non-clocked address signals via input terminals, a transmission gate that combines the global clock signal and the higher order non-clocked address signals, third logic gates that receive lower order non-clocked address signals and higher order clocked address signals, and output a combined lower order address and higher order address along with the global clock signal, level shifter circuits that receive the outputs, and word-line driver circuits that generate word-lines based on the output of the level shifter circuits.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: June 2, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ankur Gupta, Abhishek Kesarwani, Parvinder Kumar Rana, Manish Chandra Joshi, Lava Kumar Pulluru
  • Publication number: 20200075070
    Abstract: A fin-Field Effect Transistor based system on chip (SoC) memory is provided and includes a control block, first logic gates, and row decoder blocks. The control block includes a clock generator circuit that generates an internal clock signal, and a global driver circuit coupled to the clock generator circuit that drives a global clock signal. Each row decoder block includes a second logic gate that receives higher order non-clocked address signals via input terminals, a transmission gate that combines the global clock signal and the higher order non-clocked address signals, third logic gates that receive lower order non-clocked address signals and higher order clocked address signals, and output a combined lower order address and higher order address along with the global clock signal, level shifter circuits that receive the outputs, and word-line driver circuits that generate word-lines based on the output of the level shifter circuits.
    Type: Application
    Filed: October 22, 2018
    Publication date: March 5, 2020
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ankur GUPTA, Abhishek KESARWANI, Parvinder Kumar RANA, Manish Chandra JOSHI, Lava Kumar PULLURU
  • Patent number: 9001570
    Abstract: A memory configurable to be used in an RTA mode includes an input latch configured to receive an input address bus and to generate a latched address bus that corresponds to a memory location. An address flop is configured to save the latched address and to generate a flopped address. A first block address pre-decoder stage is configured to generate a pre-decoded latched address to an RTA generation logic in response to the latched address bus; and a second block address pre-decoder configured to generate a pre-decoded flopped address to the RTA generation logic in response to the flopped address. The RTA generation logic generates an RTA enable signal one clock cycle before a memory block access, to activate a memory block corresponding to the memory location, such that an array supply voltage of the memory block starts charging one clock cycle before a memory block access.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: April 7, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Rashmi Sachan, Parvinder Rana, Abhishek Kesarwani, Robert Pitts
  • Publication number: 20150092475
    Abstract: A memory configurable to be used in an RTA mode includes an input latch configured to receive an input address bus and to generate a latched address bus that corresponds to a memory location. An address flop is configured to save the latched address and to generate a flopped address. A first block address pre-decoder stage is configured to generate a pre-decoded latched address to an RTA generation logic in response to the latched address bus; and a second block address pre-decoder configured to generate a pre-decoded flopped address to the RTA generation logic in response to the flopped address. The RTA generation logic generates an RTA enable signal one clock cycle before a memory block access, to activate a memory block corresponding to the memory location, such that an array supply voltage of the memory block starts charging one clock cycle before a memory block access.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Rashmi Sachan, Parvinder Rana, Abhishek Kesarwani, Robert Pitts