Patents by Inventor Abishek Krishna Akella

Abishek Krishna Akella has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11875681
    Abstract: Drive envelope determination is described. In an example, a vehicle can capture sensor data while traversing an environment and can provide the sensor data to computing system(s). The sensor data can indicate agent(s) in the environment and the computing system(s) can determine, based on the sensor data, a planned path through the environment relative to the agent(s). The computing system(s) can also determine lateral distance(s) to the agent(s) from the planned path. In an example, the computing system(s) can determine modified distance(s) based at least in part on the lateral distance(s) and information about the agents. The computing system can determine a drive envelope based on the modified distance(s) and can determine a trajectory in the drive envelope.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: January 16, 2024
    Assignee: ZOOX, INC.
    Inventors: Timothy Caldwell, Dan Xie, William Anthony Silva, Abishek Krishna Akella, Jefferson Bradfield Packer, Rick Zhang, Marin Kobilarov
  • Patent number: 11755020
    Abstract: Acceleration determination for controlling a vehicle, such as an autonomous vehicle, is described. In an example, objects in an environment of the vehicle are identified and a probability that each object will impact travel of the vehicle is determined. Individual accelerations for responding to each object may also be determined. Weighting factors for each of the accelerations may also be determined based on the probabilities. A control acceleration may be determined based on the weighting factors and the accelerations.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: September 12, 2023
    Assignee: Zoox, Inc.
    Inventors: Abishek Krishna Akella, Janek Hudecek
  • Publication number: 20230274636
    Abstract: Techniques for determining that a first vehicle is associated with a reverse state, and controlling a second vehicle based on the reverse state, are described herein. In some examples, the first vehicle may provide an indication that the first vehicle will be executing a reverse maneuver, such as with reverse lights on the vehicle or by positioning at an angle relative to a road or parking space to allow for the reverse maneuver into a desired location. A planning system of the second vehicle (such as an autonomous vehicle) may receive sensor data and determine a variety of these indications to determine a probability that the vehicle is going to execute a reverse maneuver. The second vehicle can further determine a likely trajectory of the reverse maneuver and can provide appropriate accommodations (e.g., time and/or space) to allow the second vehicle to execute the maneuver safely and efficiently.
    Type: Application
    Filed: May 8, 2023
    Publication date: August 31, 2023
    Inventors: Abishek Krishna Akella, Mahsa Ghafarianzadeh, Kenneth Michael Siebert
  • Patent number: 11682296
    Abstract: Techniques for determining that a first vehicle is associated with a reverse state, and controlling a second vehicle based on the reverse state, are described herein. In some examples, the first vehicle may provide an indication that the first vehicle will be executing a reverse maneuver, such as with reverse lights on the vehicle or by positioning at an angle relative to a road or parking space to allow for the reverse maneuver into a desired location. A planning system of the second vehicle (such as an autonomous vehicle) may receive sensor data and determine a variety of these indications to determine a probability that the vehicle is going to execute a reverse maneuver. The second vehicle can further determine a likely trajectory of the reverse maneuver and can provide appropriate accommodations (e.g., time and/or space) to allow the second vehicle to execute the maneuver safely and efficiently.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: June 20, 2023
    Assignee: Zoox, Inc.
    Inventors: Abishek Krishna Akella, Mahsa Ghafarianzadeh, Kenneth Michael Siebert
  • Patent number: 11548512
    Abstract: Techniques for determining a vehicle action and controlling a vehicle to perform the vehicle action for navigating the vehicle in an environment can include determining a vehicle action, such as a lane change action, for a vehicle to perform in an environment. The vehicle can detect, based at least in part on sensor data, an object associated with a target lane associated with the lane change action sensor data. In some instances, the vehicle may determine attribute data associated with the object and input the attribute data to a machine-learned model that can output a yield score. Based on such a yield score, the vehicle may determine whether it is safe to perform the lane change action.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: January 10, 2023
    Assignee: Zoox, Inc.
    Inventors: Abishek Krishna Akella, Vasiliy Karasev, Kai Zhenyu Wang, Rick Zhang
  • Publication number: 20220379889
    Abstract: Techniques for vehicle deceleration planning are discussed. The techniques include determining a first location and a first velocity of a vehicle. The techniques further include determining a second location and a second velocity of an object. Based on the first location, the second location, the first velocity, and the second velocity, a relative stopping distance between the vehicle and the object can be determined. If the relative stopping distance is less than a threshold distance, the first maximum deceleration value can be increased to a second maximum deceleration value, and the techniques determine a trajectory for the vehicle based at least in part on the second maximum deceleration value.
    Type: Application
    Filed: May 28, 2021
    Publication date: December 1, 2022
    Inventors: Abishek Krishna Akella, Seyed Mahdi Shamsi
  • Patent number: 11513519
    Abstract: Techniques are discussed for controlling a vehicle, such as an autonomous vehicle, based on occluded areas in an environment. An occluded area can represent areas where sensors of the vehicle are unable to sense portions of the environment due to obstruction by another object or sensor limitation. An occluded region for an object is determined by the vehicle as part of an occlusion grid, from the perspective of the vehicle. The vehicle may receive another occlusion grid from another source, such as another vehicle or a remote computing device that stores and distributes occlusion grids. The other occlusion grid may be from a different perspective than the occlusion grid generated by the vehicle, and may include occupancy data for the region that is otherwise occluded from the perspective of the vehicle. The vehicle can be controlled to traverse the environment based on the occupancy data received from the other source.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: November 29, 2022
    Assignee: Zoox, Inc.
    Inventors: Abishek Krishna Akella, William Anthony Silva, Marc Wimmershoff
  • Patent number: 11465619
    Abstract: A vehicle safety system within an autonomous or semi-autonomous vehicle may predict and avoid collisions between the vehicle and other moving objects in the environment. The vehicle safety system may determine one or more perturbed trajectories for another object in the environment, for example, by perturbing the state parameters of a perceived trajectory associated with the object. Each perturbed trajectory may be evaluated to determine whether it intersects or potentially collides the planned trajectory of the vehicle. In some examples, the vehicle safety system may aggregate the results of analyses of multiple perturbed trajectories to determine a collision probability and/or additional weights or adjustment factors associated with the collision prediction, and may determine actions for the vehicle to take based on the collision predictions and probabilities.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: October 11, 2022
    Assignee: Zoox, Inc.
    Inventors: William Anthony Silva, Abishek Krishna Akella
  • Patent number: 11392127
    Abstract: Trajectory determination for controlling a vehicle, such as an autonomous vehicle, is described. In an example, a vehicle system includes multiple planning systems for calculating trajectories. A first system may calculate first trajectories at a first frequency and the second system may calculate second trajectories at a second frequency and based on the first trajectories. The first and/or second trajectories may be initialized at states of the vehicle corresponding to a projection onto a previous-in-time respective first or second trajectory. The second trajectories may be control trajectories along which the vehicle is controlled.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: July 19, 2022
    Assignee: Zoox, Inc.
    Inventors: Abishek Krishna Akella, Janek Hudecek
  • Publication number: 20220073096
    Abstract: Command determination for controlling a vehicle, such as an autonomous vehicle, is described. In an example, individual requests for controlling the vehicle relative to each of multiple objects or conditions in an environment are received (substantially simultaneously) and based on the request type and/or additional information associated with a request, command controllers can determine control commands (e.g., different accelerations, steering angles, steering rates, and the like) associated with each of the one or more requests. The command controllers may have different controller gains (which may be based on functions of distance, distance ratios, time to estimated collisions, etc.) for determining the controls and a control command may be determined based on the all such determined controls.
    Type: Application
    Filed: September 20, 2021
    Publication date: March 10, 2022
    Inventors: Abishek Krishna Akella, Janek Hudecek, Marin Kobilarov, Marc Wimmershoff
  • Patent number: 11208096
    Abstract: Techniques for generating trajectories and drivable areas for navigating a vehicle in an environment are discussed herein. The techniques can include receiving a reference trajectory representing an initial trajectory for a vehicle, such as an autonomous vehicle, to traverse the environment. Portions of the reference trajectory can be identified as corresponding to actions to navigate around a double-parked vehicle or to change lanes, for example. In some cases, a portion of the reference trajectory can be identified based on a proximity to an object in the environment. A weight can be associated with the portions of the reference trajectory, and the techniques can include evaluating a reference cost function at points of the reference trajectory based on the associated weights to generate a target trajectory. Further, the techniques can include controlling the autonomous vehicle to traverse the environment based at least in part on the target trajectory.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: December 28, 2021
    Assignee: Zoox, Inc.
    Inventors: Abishek Krishna Akella, Janek Hudecek
  • Publication number: 20210370921
    Abstract: A vehicle safety system within an autonomous or semi-autonomous vehicle may predict and avoid collisions between the vehicle and other moving objects in the environment. The vehicle safety system may determine one or more perturbed trajectories for another object in the environment, for example, by perturbing the state parameters of a perceived trajectory associated with the object. Each perturbed trajectory may be evaluated to determine whether it intersects or potentially collides the planned trajectory of the vehicle. In some examples, the vehicle safety system may aggregate the results of analyses of multiple perturbed trajectories to determine a collision probability and/or additional weights or adjustment factors associated with the collision prediction, and may determine actions for the vehicle to take based on the collision predictions and probabilities.
    Type: Application
    Filed: May 27, 2020
    Publication date: December 2, 2021
    Inventors: William Anthony Silva, Abishek Krishna Akella
  • Patent number: 11126178
    Abstract: Command determination for controlling a vehicle, such as an autonomous vehicle, is described. In an example, individual requests for controlling the vehicle relative to each of multiple objects or conditions in an environment are received (substantially simultaneously) and based on the request type and/or additional information associated with a request, command controllers can determine control commands (e.g., different accelerations, steering angles, steering rates, and the like) associated with each of the one or more requests. The command controllers may have different controller gains (which may be based on functions of distance, distance ratios, time to estimated collisions, etc.) for determining the controls and a control command may be determined based on the all such determined controls.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: September 21, 2021
    Assignee: Zoox, Inc.
    Inventors: Abishek Krishna Akella, Janek Hudecek, Marin Kobilarov, Marc Wimmershoff
  • Publication number: 20210256850
    Abstract: Drive envelope determination is described. In an example, a vehicle can capture sensor data while traversing an environment and can provide the sensor data to computing system(s). The sensor data can indicate agent(s) in the environment and the computing system(s) can determine, based on the sensor data, a planned path through the environment relative to the agent(s). The computing system(s) can also determine lateral distance(s) to the agent(s) from the planned path. In an example, the computing system(s) can determine modified distance(s) based at least in part on the lateral distance(s) and information about the agents. The computing system can determine a drive envelope based on the modified distance(s) and can determine a trajectory in the drive envelope.
    Type: Application
    Filed: February 26, 2021
    Publication date: August 19, 2021
    Inventors: Timothy Caldwell, Dan Xie, William Anthony Silva, Abishek Krishna Akella, Jefferson Bradfield Packer, Rick Zhang, Marin Kobilarov
  • Patent number: 10937320
    Abstract: Drive envelope determination is described. In an example, a vehicle can capture sensor data while traversing an environment and can provide the sensor data to computing system(s). The sensor data can indicate agent(s) in the environment and the computing system(s) can determine, based on the sensor data, a planned path through the environment relative to the agent(s). The computing system(s) can also determine lateral distance(s) to the agent(s) from the planned path. In an example, the computing system(s) can determine modified distance(s) based at least in part on the lateral distance(s) and information about the agents. The computing system can determine a drive envelope based on the modified distance(s) and can determine a trajectory in the drive envelope.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 2, 2021
    Assignee: Zoox, Inc.
    Inventors: Timothy Caldwell, Dan Xie, William Anthony Silva, Abishek Krishna Akella, Jefferson Bradfield Packer, Rick Zhang, Marin Kobilarov
  • Publication number: 20210053570
    Abstract: Techniques for determining a vehicle action and controlling a vehicle to perform the vehicle action for navigating the vehicle in an environment can include determining a vehicle action, such as a lane change action, for a vehicle to perform in an environment. The vehicle can detect, based at least in part on sensor data, an object associated with a target lane associated with the lane change action sensor data. In some instances, the vehicle may determine attribute data associated with the object and input the attribute data to a machine-learned model that can output a yield score. Based on such a yield score, the vehicle may determine whether it is safe to perform the lane change action.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 25, 2021
    Inventors: Abishek Krishna Akella, Vasiliy Karasev, Kai Zhenyu Wang, Rick Zhang
  • Publication number: 20210026363
    Abstract: Acceleration determination for controlling a vehicle, such as an autonomous vehicle, is described. In an example, objects in an environment of the vehicle are identified and a probability that each object will impact travel of the vehicle is determined. Individual accelerations for responding to each object may also be determined. Weighting factors for each of the accelerations may also be determined based on the probabilities. A control acceleration may be determined based on the weighting factors and the accelerations.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 28, 2021
    Inventors: Abishek Krishna Akella, Janek Hudecek
  • Publication number: 20200406894
    Abstract: A machine-learned model is trained using human driving data to determine a desired vehicle speed based from a set of driving-environment characteristics. An autonomous-vehicle control system obtains, from cameras, sensors, services, and data sources, a variety of sensor data. The sensor data is used to determine a set of characteristics for the driving-environment for the autonomous vehicle. Using the machine-learned model, the autonomous-vehicle control system determines a human-like desired speed for the autonomous vehicle based at least in part on the determined characteristics of the driving-environment.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventor: Abishek Krishna Akella
  • Publication number: 20200410853
    Abstract: Techniques for determining that a first vehicle is associated with a reverse state, and controlling a second vehicle based on the reverse state, are described herein. In some examples, the first vehicle may provide an indication that the first vehicle will be executing a reverse maneuver, such as with reverse lights on the vehicle or by positioning at an angle relative to a road or parking space to allow for the reverse maneuver into a desired location. A planning system of the second vehicle (such as an autonomous vehicle) may receive sensor data and determine a variety of these indications to determine a probability that the vehicle is going to execute a reverse maneuver. The second vehicle can further determine a likely trajectory of the reverse maneuver and can provide appropriate accommodations (e.g., time and/or space) to allow the second vehicle to execute the maneuver safely and efficiently.
    Type: Application
    Filed: June 28, 2019
    Publication date: December 31, 2020
    Inventors: Abishek Krishna Akella, Mahsa Ghafarianzadeh, Kenneth Michael Siebert
  • Patent number: 10816987
    Abstract: Acceleration determination for controlling a vehicle, such as an autonomous vehicle, is described. In an example, objects in an environment of the vehicle are identified and a probability that each object will impact travel of the vehicle is determined. Individual accelerations for responding to each object may also be determined. Weighting factors for each of the accelerations may also be determined based on the probabilities. A control acceleration may be determined based on the weighting factors and the accelerations.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: October 27, 2020
    Assignee: Zoox, Inc.
    Inventors: Abishek Krishna Akella, Janek Hudecek